First implemented aproximation

This commit is contained in:
2025-01-31 13:55:46 +01:00
parent b90e558238
commit fb957ac3fe
4 changed files with 353 additions and 1 deletions

267
bayesnet/ensembles/WA2DE.cc Normal file
View File

@@ -0,0 +1,267 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "WA2DE.h"
namespace bayesnet {
WA2DE::WA2DE(bool predict_voting)
: num_classes_(0), num_attributes_(0), total_count_(0.0), weighted_a2de_(false), smoothing_factor_(1.0)
{
validHyperparameters = { "predict_voting" };
std::cout << "WA2DE classifier created.\n";
}
void bayesnet::WA2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
Classifier::setHyperparameters(hyperparameters);
}
void WA2DE::buildModel(const torch::Tensor& weights)
{
for (int c = 0; c < num_classes_; ++c) {
class_counts_[c] += 1e-4; // Laplace smoothing
}
for (int a = 0; a < num_attributes_; ++a) {
for (int v = 0; v < attribute_cardinalities_[a]; ++v) {
for (int c = 0; c < num_classes_; ++c) {
freq_attr_class_[a][v][c] =
(freq_attr_class_[a][v][c] + 1.0) / (class_counts_[c] + attribute_cardinalities_[a]);
}
}
}
for (int sp = 0; sp < num_attributes_; ++sp) {
for (int spv = 0; spv < attribute_cardinalities_[sp]; ++spv) {
for (int ch = 0; ch < num_attributes_; ++ch) {
if (sp != ch) {
for (int chv = 0; chv < attribute_cardinalities_[ch]; ++chv) {
for (int c = 0; c < num_classes_; ++c) {
freq_pair_class_[sp][spv][ch][chv][c] =
(freq_pair_class_[sp][spv][ch][chv][c] + 1.0) /
(class_counts_[c] + attribute_cardinalities_[sp] * attribute_cardinalities_[ch]);
}
}
}
}
}
}
std::cout << "Model probabilities computed.\n";
}
void WA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
{
auto data = dataset.clone();
auto labels = data[-1];
// Remove class row from data
data = data.index({ at::indexing::Slice(0, -1) });
std::cout << "Training A2DE model...\n";
std::cout << "Data: " << data.sizes() << std::endl;
std::cout << "Labels: " << labels.sizes() << std::endl;
std::cout << std::string(80, '-') << std::endl;
if (data.dim() != 2 || labels.dim() != 1) {
throw std::invalid_argument("Invalid input dimensions.");
}
num_attributes_ = data.size(0);
num_classes_ = labels.max().item<int>() + 1;
total_count_ = data.size(1);
std::cout << "Number of attributes: " << num_attributes_ << std::endl;
std::cout << "Number of classes: " << num_classes_ << std::endl;
std::cout << "Total count: " << total_count_ << std::endl;
// Compute cardinalities
attribute_cardinalities_.clear();
for (int i = 0; i < num_attributes_; ++i) {
attribute_cardinalities_.push_back(data[i].max().item<int>() + 1);
}
std::cout << "Attribute cardinalities: ";
for (int i = 0; i < num_attributes_; ++i) {
std::cout << attribute_cardinalities_[i] << " ";
}
std::cout << std::endl;
// output the map of states
std::cout << "States: ";
for (int i = 0; i < states.size() - 1; i++) {
std::cout << features[i] << " " << states[features[i]].size() << std::endl;
}
// Resize storage
class_counts_.resize(num_classes_, 0.0);
freq_attr_class_.resize(num_attributes_);
freq_pair_class_.resize(num_attributes_);
for (int i = 0; i < num_attributes_; ++i) {
freq_attr_class_[i].resize(attribute_cardinalities_[i], std::vector<double>(num_classes_, 0.0));
freq_pair_class_[i].resize(attribute_cardinalities_[i]); // Ensure first level exists
for (int j = 0; j < attribute_cardinalities_[i]; ++j) {
freq_pair_class_[i][j].resize(num_attributes_); // Ensure second level exists
for (int k = 0; k < num_attributes_; ++k) {
if (i != k) {
freq_pair_class_[i][j][k].resize(attribute_cardinalities_[k]); // Ensure third level exists
for (int l = 0; l < attribute_cardinalities_[k]; ++l) {
freq_pair_class_[i][j][k][l].resize(num_classes_, 0.0); // Finally, initialize with 0.0
}
}
}
}
}
// Count frequencies
auto data_cpu = data.to(torch::kCPU);
auto labels_cpu = labels.to(torch::kCPU);
int32_t* data_ptr = data_cpu.data_ptr<int32_t>();
int32_t* labels_ptr = labels_cpu.data_ptr<int32_t>();
for (int i = 0; i < total_count_; ++i) {
int class_label = labels_ptr[i];
class_counts_[class_label] += 1.0;
std::vector<int> attr_values(num_attributes_);
for (int a = 0; a < num_attributes_; ++a) {
attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]);
freq_attr_class_[a][attr_values[a]][class_label] += 1.0;
}
// Pairwise counts
for (int sp = 0; sp < num_attributes_; ++sp) {
for (int ch = 0; ch < num_attributes_; ++ch) {
if (sp != ch) {
freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][class_label] += 1.0;
}
}
}
}
std::cout << "Verifying Frequency Counts:\n";
for (int c = 0; c < num_classes_; ++c) {
std::cout << "Class " << c << " Count: " << class_counts_[c] << std::endl;
}
for (int a = 0; a < num_attributes_; ++a) {
for (int v = 0; v < attribute_cardinalities_[a]; ++v) {
std::cout << "P(A[" << a << "]=" << v << "|C): ";
for (int c = 0; c < num_classes_; ++c) {
std::cout << freq_attr_class_[a][v][c] << " ";
}
std::cout << std::endl;
}
}
}
torch::Tensor WA2DE::computeProbabilities(const torch::Tensor& data) const
{
int M = data.size(1);
auto output = torch::zeros({ M, num_classes_ }, torch::kF64);
auto data_cpu = data.to(torch::kCPU);
int32_t* data_ptr = data_cpu.data_ptr<int32_t>();
for (int i = 0; i < M; ++i) {
std::vector<int> attr_values(num_attributes_);
for (int a = 0; a < num_attributes_; ++a) {
attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]);
}
std::vector<double> log_prob(num_classes_, 0.0);
for (int c = 0; c < num_classes_; ++c) {
log_prob[c] = std::log((class_counts_[c] + smoothing_factor_) / (total_count_ + num_classes_ * smoothing_factor_));
double sum_log = 0.0;
for (int sp = 0; sp < num_attributes_; ++sp) {
double sp_log = log_prob[c];
for (int ch = 0; ch < num_attributes_; ++ch) {
if (sp == ch) continue;
double num = freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][c] + smoothing_factor_;
double denom = class_counts_[c] + attribute_cardinalities_[sp] * attribute_cardinalities_[ch] * smoothing_factor_;
sp_log += std::log(num / denom);
}
sum_log += std::exp(sp_log);
}
log_prob[c] = std::log(sum_log / num_attributes_);
}
double max_log = *std::max_element(log_prob.begin(), log_prob.end());
double sum_exp = 0.0;
for (int c = 0; c < num_classes_; ++c) {
sum_exp += std::exp(log_prob[c] - max_log);
}
double log_sum_exp = max_log + std::log(sum_exp);
for (int c = 0; c < num_classes_; ++c) {
output[i][c] = std::exp(log_prob[c] - log_sum_exp);
}
}
return output.to(torch::kF32);
}
int WA2DE::toIntValue(int attributeIndex, float value) const
{
int v = static_cast<int>(value);
return std::max(0, std::min(v, attribute_cardinalities_[attributeIndex] - 1));
}
torch::Tensor WA2DE::AODEConditionalProb(const torch::Tensor& data)
{
int M = data.size(1); // Number of test samples
torch::Tensor output = torch::zeros({ M, num_classes_ }, torch::kF32);
auto data_cpu = data.to(torch::kCPU);
int32_t* data_ptr = data_cpu.data_ptr<int32_t>();
for (int i = 0; i < M; ++i) {
std::vector<int> attr_values(num_attributes_);
for (int a = 0; a < num_attributes_; ++a) {
attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]);
}
std::vector<double> log_prob(num_classes_, 0.0);
for (int c = 0; c < num_classes_; ++c) {
log_prob[c] = std::log(class_counts_[c] / total_count_);
double sum_log = 0.0;
for (int sp = 0; sp < num_attributes_; ++sp) {
double sp_log = log_prob[c];
for (int ch = 0; ch < num_attributes_; ++ch) {
if (sp == ch) continue;
double prob = freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][c];
sp_log += std::log(prob);
}
sum_log += std::exp(sp_log);
}
log_prob[c] = std::log(sum_log / num_attributes_);
}
double max_log = *std::max_element(log_prob.begin(), log_prob.end());
double sum_exp = 0.0;
for (int c = 0; c < num_classes_; ++c) {
sum_exp += std::exp(log_prob[c] - max_log);
}
double log_sum_exp = max_log + std::log(sum_exp);
for (int c = 0; c < num_classes_; ++c) {
output[i][c] = std::exp(log_prob[c] - log_sum_exp);
}
}
return output;
}
double WA2DE::score(const torch::Tensor& X, const torch::Tensor& y)
{
torch::Tensor preds = AODEConditionalProb(X);
torch::Tensor pred_labels = preds.argmax(1);
auto correct = pred_labels.eq(y).sum().item<int>();
auto total = y.size(0);
return static_cast<double>(correct) / total;
}
std::vector<std::string> WA2DE::graph(const std::string& title) const
{
return { title, "Graph visualization not implemented." };
}
}

View File

@@ -0,0 +1,53 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef WA2DE_H
#define WA2DE_H
#include "Ensemble.h"
#include <torch/torch.h>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
namespace bayesnet {
/**
* Geoffrey I. Webb's A2DE (Averaged 2-Dependence Estimators) classifier
* Implements the A2DE algorithm as an ensemble of SPODE models.
*/
class WA2DE : public Ensemble {
public:
explicit WA2DE(bool predict_voting = false);
virtual ~WA2DE() {};
// Override method to set hyperparameters
void setHyperparameters(const nlohmann::json& hyperparameters) override;
// Graph visualization function
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
torch::Tensor computeProbabilities(const torch::Tensor& data) const;
double score(const torch::Tensor& X, const torch::Tensor& y);
protected:
// Model-building function
void buildModel(const torch::Tensor& weights) override;
private:
int num_classes_; // Number of classes
int num_attributes_; // Number of attributes
std::vector<int> attribute_cardinalities_; // Cardinalities of attributes
// Frequency counts (similar to Java implementation)
std::vector<double> class_counts_; // Class frequency
std::vector<std::vector<std::vector<double>>> freq_attr_class_; // P(A | C)
std::vector<std::vector<std::vector<std::vector<std::vector<double>>>>> freq_pair_class_; // P(A_i, A_j | C)
double total_count_; // Total instance count
bool weighted_a2de_; // Whether to use weighted A2DE
double smoothing_factor_; // Smoothing parameter (default: Laplace)
torch::Tensor AODEConditionalProb(const torch::Tensor& data);
void trainModel(const torch::Tensor& data, const Smoothing_t smoothing);
int toIntValue(int attributeIndex, float value) const;
};
}
#endif