Begin gridsearch implementation
This commit is contained in:
@@ -1,38 +1,91 @@
|
||||
#include <iostream>
|
||||
#include <torch/torch.h>
|
||||
#include "GridSearch.h"
|
||||
#include "Models.h"
|
||||
#include "Paths.h"
|
||||
#include "Datasets.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "Folding.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
this->config.output_file = config.path + "grid_" + config.model + "_output.json";
|
||||
}
|
||||
void showProgress(int fold, const std::string& color, const std::string& phase)
|
||||
{
|
||||
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
}
|
||||
std::string getColor(bayesnet::status_t status)
|
||||
{
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
void GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters)
|
||||
{
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
std::cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
for (const auto& seed : config.seeds) {
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
// auto train_t = torch::tensor(train);
|
||||
// auto test_t = torch::tensor(test);
|
||||
// auto X_train = X.index({ "...", train_t });
|
||||
// auto y_train = y.index({ train_t });
|
||||
// auto X_test = X.index({ "...", test_t });
|
||||
// auto y_test = y.index({ test_t });
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
// clf->fit(X_train, y_train, features, className, states);
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
}
|
||||
delete fold;
|
||||
}
|
||||
}
|
||||
void GridSearch::go()
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets = platform::Datasets(config.discretize, Paths::datasets());
|
||||
int i = 0;
|
||||
for (const auto& item : grid.getGrid("BoostAODE")) {
|
||||
std::cout << i++ << " hyperparams: " << item.dump() << std::endl;
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
// Create model
|
||||
std::cout << "***************** Starting Gridsearch *****************" << std::endl;
|
||||
std::cout << "* Doing " << grid.getNumCombinations(config.model) << " combinations for each dataset/seed/fold" << std::endl;
|
||||
// Generate hyperparameters grid & run gridsearch
|
||||
// Check each combination of hyperparameters for each dataset and each seed
|
||||
for (const auto& dataset : datasets.getNames()) {
|
||||
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||
for (const auto& hyperparam_line : grid.getGrid(config.model)) {
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
processFile(dataset, datasets, hyperparameters);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
// Load hyperparameters
|
||||
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), config.input_file);
|
||||
// Check if hyperparameters are valid
|
||||
// auto valid_hyperparameters = platform::Models::instance()->getHyperparameters(config.model);
|
||||
// hyperparameters.check(valid_hyperparameters, config.model);
|
||||
// // Load model
|
||||
// auto model = platform::Models::instance()->get(config.model);
|
||||
// // Run gridsearch
|
||||
// auto grid = platform::Grid(datasets, hyperparameters, model, config.score, config.discretize, config.stratified, config.n_folds, config.seeds);
|
||||
// grid.run();
|
||||
// // Save results
|
||||
// grid.save(config.output_file);
|
||||
// Save results
|
||||
save();
|
||||
}
|
||||
void GridSearch::save()
|
||||
{
|
||||
|
||||
std::ofstream file(config.output_file);
|
||||
// file << results.dump(4);
|
||||
file.close();
|
||||
}
|
||||
|
||||
} /* namespace platform */
|
Reference in New Issue
Block a user