Complete implementation with tests
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://deepwiki.com/Doctorado-ML/BayesNet)
|
||||

|
||||
[](https://gitea.rmontanana.es/rmontanana/BayesNet)
|
||||
[](https://gitea.rmontanana.es/rmontanana/BayesNet)
|
||||
[](https://doi.org/10.5281/zenodo.14210344)
|
||||
|
||||
Bayesian Network Classifiers library
|
||||
|
@@ -14,33 +14,29 @@ namespace bayesnet {
|
||||
validHyperparameters.push_back("k");
|
||||
validHyperparameters.push_back("theta");
|
||||
}
|
||||
void KDBLd::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("k")) {
|
||||
k = hyperparameters["k"];
|
||||
hyperparameters.erase("k");
|
||||
}
|
||||
if (hyperparameters.contains("theta")) {
|
||||
theta = hyperparameters["theta"];
|
||||
hyperparameters.erase("theta");
|
||||
}
|
||||
Proposal::setHyperparameters(hyperparameters);
|
||||
}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
// Use iterative local discretization instead of the two-phase approach
|
||||
KDBLd& KDBLd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
states = iterativeLocalDiscretization(y, static_cast<KDB*>(this), dataset, features, className, states_, smoothing);
|
||||
|
||||
// Final fit with converged discretization
|
||||
KDB::fit(dataset, features, className, states, smoothing);
|
||||
|
||||
return *this;
|
||||
}
|
||||
torch::Tensor KDBLd::predict(torch::Tensor& X)
|
||||
|
@@ -15,8 +15,15 @@ namespace bayesnet {
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
KDBLd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
KDBLd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
Proposal::setHyperparameters(hyperparameters);
|
||||
KDB::setHyperparameters(hyperparameters);
|
||||
}
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
|
@@ -11,6 +11,7 @@
|
||||
#include "Classifier.h"
|
||||
#include "KDB.h"
|
||||
#include "TAN.h"
|
||||
#include "SPODE.h"
|
||||
#include "KDBLd.h"
|
||||
#include "TANLd.h"
|
||||
|
||||
@@ -18,9 +19,8 @@ namespace bayesnet {
|
||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_)
|
||||
{
|
||||
}
|
||||
void Proposal::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
void Proposal::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("ld_proposed_cuts")) {
|
||||
ld_params.proposed_cuts = hyperparameters["ld_proposed_cuts"];
|
||||
hyperparameters.erase("ld_proposed_cuts");
|
||||
@@ -55,9 +55,6 @@ namespace bayesnet {
|
||||
convergence_params.verbose = hyperparameters["verbose_convergence"];
|
||||
hyperparameters.erase("verbose_convergence");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters for Proposal: " + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
|
||||
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
|
||||
@@ -228,45 +225,6 @@ namespace bayesnet {
|
||||
return currentStates;
|
||||
}
|
||||
|
||||
double Proposal::computeLogLikelihood(Network& model, const torch::Tensor& dataset)
|
||||
{
|
||||
double logLikelihood = 0.0;
|
||||
int n_samples = dataset.size(0);
|
||||
int n_features = dataset.size(1);
|
||||
|
||||
for (int i = 0; i < n_samples; ++i) {
|
||||
double sampleLogLikelihood = 0.0;
|
||||
|
||||
// Get class value for this sample
|
||||
int classValue = dataset[i][n_features - 1].item<int>();
|
||||
|
||||
// Compute log-likelihood for each feature given its parents and class
|
||||
for (const auto& node : model.getNodes()) {
|
||||
if (node.first == model.getClassName()) {
|
||||
// For class node, add log P(class)
|
||||
auto classCounts = node.second->getCPT();
|
||||
double classProb = classCounts[classValue].item<double>() / dataset.size(0);
|
||||
sampleLogLikelihood += std::log(std::max(classProb, 1e-10));
|
||||
} else {
|
||||
// For feature nodes, add log P(feature | parents, class)
|
||||
int featureIdx = std::distance(model.getFeatures().begin(),
|
||||
std::find(model.getFeatures().begin(),
|
||||
model.getFeatures().end(),
|
||||
node.first));
|
||||
int featureValue = dataset[i][featureIdx].item<int>();
|
||||
|
||||
// Simplified probability computation - in practice would need full CPT lookup
|
||||
double featureProb = 0.1; // Placeholder - would compute from CPT
|
||||
sampleLogLikelihood += std::log(std::max(featureProb, 1e-10));
|
||||
}
|
||||
}
|
||||
|
||||
logLikelihood += sampleLogLikelihood;
|
||||
}
|
||||
|
||||
return logLikelihood;
|
||||
}
|
||||
|
||||
// Explicit template instantiation for common classifier types
|
||||
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<KDB>(
|
||||
const torch::Tensor&, KDB*, torch::Tensor&, const std::vector<std::string>&,
|
||||
@@ -275,4 +233,7 @@ namespace bayesnet {
|
||||
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<TAN>(
|
||||
const torch::Tensor&, TAN*, torch::Tensor&, const std::vector<std::string>&,
|
||||
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
|
||||
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<SPODE>(
|
||||
const torch::Tensor&, SPODE*, torch::Tensor&, const std::vector<std::string>&,
|
||||
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
|
||||
}
|
||||
|
@@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
class Proposal {
|
||||
public:
|
||||
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_);
|
||||
void setHyperparameters(nlohmann::json& hyperparameters_);
|
||||
protected:
|
||||
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
|
||||
torch::Tensor prepareX(torch::Tensor& X);
|
||||
@@ -61,7 +61,6 @@ namespace bayesnet {
|
||||
};
|
||||
private:
|
||||
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
double computeLogLikelihood(Network& model, const torch::Tensor& dataset);
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
|
@@ -34,12 +34,8 @@ namespace bayesnet {
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
states = iterativeLocalDiscretization(y, static_cast<SPODE*>(this), dataset, features, className, states_, smoothing);
|
||||
SPODE::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
||||
|
@@ -18,6 +18,12 @@ namespace bayesnet {
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
Proposal::setHyperparameters(hyperparameters);
|
||||
SPODE::setHyperparameters(hyperparameters);
|
||||
}
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
|
@@ -12,17 +12,26 @@ namespace bayesnet {
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
TANLd& TANLd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
// Use iterative local discretization instead of the two-phase approach
|
||||
TANLd& TANLd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
states = iterativeLocalDiscretization(y, static_cast<TAN*>(this), dataset, features, className, states_, smoothing);
|
||||
|
||||
// Final fit with converged discretization
|
||||
TAN::fit(dataset, features, className, states, smoothing);
|
||||
|
||||
return *this;
|
||||
}
|
||||
torch::Tensor TANLd::predict(torch::Tensor& X)
|
||||
|
@@ -16,7 +16,15 @@ namespace bayesnet {
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
TANLd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
TANLd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
Proposal::setHyperparameters(hyperparameters);
|
||||
TAN::setHyperparameters(hyperparameters);
|
||||
}
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
};
|
||||
|
@@ -17,6 +17,10 @@ namespace bayesnet {
|
||||
virtual ~AODELd() = default;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override
|
||||
{
|
||||
hyperparameters = hyperparameters_;
|
||||
}
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
|
@@ -31,9 +31,9 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{{"diabetes", "SPODE"}, 0.802083},
|
||||
{{"diabetes", "TAN"}, 0.821615},
|
||||
{{"diabetes", "AODELd"}, 0.8125f},
|
||||
{{"diabetes", "KDBLd"}, 0.80208f},
|
||||
{{"diabetes", "KDBLd"}, 0.804688f},
|
||||
{{"diabetes", "SPODELd"}, 0.7890625f},
|
||||
{{"diabetes", "TANLd"}, 0.803385437f},
|
||||
{{"diabetes", "TANLd"}, 0.8125f},
|
||||
{{"diabetes", "BoostAODE"}, 0.83984f},
|
||||
// Ecoli
|
||||
{{"ecoli", "AODE"}, 0.889881},
|
||||
@@ -42,9 +42,9 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{{"ecoli", "SPODE"}, 0.880952},
|
||||
{{"ecoli", "TAN"}, 0.892857},
|
||||
{{"ecoli", "AODELd"}, 0.875f},
|
||||
{{"ecoli", "KDBLd"}, 0.880952358f},
|
||||
{{"ecoli", "KDBLd"}, 0.872024f},
|
||||
{{"ecoli", "SPODELd"}, 0.839285731f},
|
||||
{{"ecoli", "TANLd"}, 0.848214269f},
|
||||
{{"ecoli", "TANLd"}, 0.869047642f},
|
||||
{{"ecoli", "BoostAODE"}, 0.89583f},
|
||||
// Glass
|
||||
{{"glass", "AODE"}, 0.79439},
|
||||
@@ -53,9 +53,9 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{{"glass", "SPODE"}, 0.775701},
|
||||
{{"glass", "TAN"}, 0.827103},
|
||||
{{"glass", "AODELd"}, 0.799065411f},
|
||||
{{"glass", "KDBLd"}, 0.82710278f},
|
||||
{{"glass", "KDBLd"}, 0.864485979f},
|
||||
{{"glass", "SPODELd"}, 0.780373812f},
|
||||
{{"glass", "TANLd"}, 0.869158864f},
|
||||
{{"glass", "TANLd"}, 0.831775725f},
|
||||
{{"glass", "BoostAODE"}, 0.84579f},
|
||||
// Iris
|
||||
{{"iris", "AODE"}, 0.973333},
|
||||
@@ -68,23 +68,23 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{{"iris", "SPODELd"}, 0.96f},
|
||||
{{"iris", "TANLd"}, 0.97333f},
|
||||
{{"iris", "BoostAODE"}, 0.98f} };
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models{ {"AODE", new bayesnet::AODE()},
|
||||
{"AODELd", new bayesnet::AODELd()},
|
||||
{"BoostAODE", new bayesnet::BoostAODE()},
|
||||
{"KDB", new bayesnet::KDB(2)},
|
||||
{"KDBLd", new bayesnet::KDBLd(2)},
|
||||
{"XSPODE", new bayesnet::XSpode(1)},
|
||||
{"SPODE", new bayesnet::SPODE(1)},
|
||||
{"SPODELd", new bayesnet::SPODELd(1)},
|
||||
{"TAN", new bayesnet::TAN()},
|
||||
{"TANLd", new bayesnet::TANLd()} };
|
||||
std::map<std::string, std::unique_ptr<bayesnet::BaseClassifier>> models;
|
||||
models["AODE"] = std::make_unique<bayesnet::AODE>();
|
||||
models["AODELd"] = std::make_unique<bayesnet::AODELd>();
|
||||
models["BoostAODE"] = std::make_unique<bayesnet::BoostAODE>();
|
||||
models["KDB"] = std::make_unique<bayesnet::KDB>(2);
|
||||
models["KDBLd"] = std::make_unique<bayesnet::KDBLd>(2);
|
||||
models["XSPODE"] = std::make_unique<bayesnet::XSpode>(1);
|
||||
models["SPODE"] = std::make_unique<bayesnet::SPODE>(1);
|
||||
models["SPODELd"] = std::make_unique<bayesnet::SPODELd>(1);
|
||||
models["TAN"] = std::make_unique<bayesnet::TAN>();
|
||||
models["TANLd"] = std::make_unique<bayesnet::TANLd>();
|
||||
std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "XSPODE", "SPODELd", "TAN", "TANLd");
|
||||
auto clf = models[name];
|
||||
auto clf = std::move(models[name]);
|
||||
|
||||
SECTION("Test " + name + " classifier")
|
||||
{
|
||||
for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) {
|
||||
auto clf = models[name];
|
||||
auto discretize = name.substr(name.length() - 2) != "Ld";
|
||||
auto raw = RawDatasets(file_name, discretize);
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
@@ -101,7 +101,6 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
INFO("Checking version of " << name << " classifier");
|
||||
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
||||
}
|
||||
delete clf;
|
||||
}
|
||||
TEST_CASE("Models features & Graph", "[Models]")
|
||||
{
|
||||
@@ -133,7 +132,7 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 27);
|
||||
REQUIRE(clf.getNumberOfStates() == 26);
|
||||
REQUIRE(clf.getClassNumStates() == 3);
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> sepallength, ", "petalwidth -> ",
|
||||
@@ -149,7 +148,6 @@ TEST_CASE("Get num features & num edges", "[Models]")
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
||||
|
||||
TEST_CASE("Model predict_proba", "[Models]")
|
||||
{
|
||||
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting", "TANLd", "SPODELd", "KDBLd");
|
||||
@@ -180,15 +178,15 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
{0.0284828, 0.770524, 0.200993},
|
||||
{0.0213182, 0.857189, 0.121493},
|
||||
{0.00868436, 0.949494, 0.0418215} });
|
||||
auto res_prob_tanld = std::vector<std::vector<double>>({ {0.000544493, 0.995796, 0.00365992 },
|
||||
{0.000908092, 0.997268, 0.00182429 },
|
||||
{0.000908092, 0.997268, 0.00182429 },
|
||||
{0.000908092, 0.997268, 0.00182429 },
|
||||
{0.00228423, 0.994645, 0.00307078 },
|
||||
{0.00120539, 0.0666788, 0.932116 },
|
||||
{0.00361847, 0.979203, 0.017179 },
|
||||
{0.00483293, 0.985326, 0.00984064 },
|
||||
{0.000595606, 0.9977, 0.00170441 } });
|
||||
auto res_prob_tanld = std::vector<std::vector<double>>({ {0.000597557, 0.9957, 0.00370254},
|
||||
{0.000731377, 0.997914, 0.0013544},
|
||||
{0.000731377, 0.997914, 0.0013544},
|
||||
{0.000731377, 0.997914, 0.0013544},
|
||||
{0.000838614, 0.998122, 0.00103923},
|
||||
{0.00130852, 0.0659492, 0.932742},
|
||||
{0.00365946, 0.979412, 0.0169281},
|
||||
{0.00435035, 0.986248, 0.00940212},
|
||||
{0.000583815, 0.997746, 0.00167066} });
|
||||
auto res_prob_spodeld = std::vector<std::vector<double>>({ {0.000908024, 0.993742, 0.00535024 },
|
||||
{0.00187726, 0.99167, 0.00645308 },
|
||||
{0.00187726, 0.99167, 0.00645308 },
|
||||
@@ -216,29 +214,33 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
{"TANLd", res_prob_tanld},
|
||||
{"SPODELd", res_prob_spodeld},
|
||||
{"KDBLd", res_prob_kdbld} };
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()},
|
||||
{"SPODE", new bayesnet::SPODE(0)},
|
||||
{"BoostAODEproba", new bayesnet::BoostAODE(false)},
|
||||
{"BoostAODEvoting", new bayesnet::BoostAODE(true)},
|
||||
{"TANLd", new bayesnet::TANLd()},
|
||||
{"SPODELd", new bayesnet::SPODELd(0)},
|
||||
{"KDBLd", new bayesnet::KDBLd(2)} };
|
||||
|
||||
std::map<std::string, std::unique_ptr<bayesnet::BaseClassifier>> models;
|
||||
models["TAN"] = std::make_unique<bayesnet::TAN>();
|
||||
models["SPODE"] = std::make_unique<bayesnet::SPODE>(0);
|
||||
models["BoostAODEproba"] = std::make_unique<bayesnet::BoostAODE>(false);
|
||||
models["BoostAODEvoting"] = std::make_unique<bayesnet::BoostAODE>(true);
|
||||
models["TANLd"] = std::make_unique<bayesnet::TANLd>();
|
||||
models["SPODELd"] = std::make_unique<bayesnet::SPODELd>(0);
|
||||
models["KDBLd"] = std::make_unique<bayesnet::KDBLd>(2);
|
||||
|
||||
int init_index = 78;
|
||||
|
||||
SECTION("Test " + model + " predict_proba")
|
||||
{
|
||||
INFO("Testing " << model << " predict_proba");
|
||||
auto ld_model = model.substr(model.length() - 2) == "Ld";
|
||||
auto discretize = !ld_model;
|
||||
auto raw = RawDatasets("iris", discretize);
|
||||
auto clf = models[model];
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
||||
auto yt_pred = clf->predict(raw.Xt);
|
||||
auto& clf = *models[model];
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto yt_pred_proba = clf.predict_proba(raw.Xt);
|
||||
auto yt_pred = clf.predict(raw.Xt);
|
||||
std::vector<int> y_pred;
|
||||
std::vector<std::vector<double>> y_pred_proba;
|
||||
if (!ld_model) {
|
||||
y_pred = clf->predict(raw.Xv);
|
||||
y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
y_pred = clf.predict(raw.Xv);
|
||||
y_pred_proba = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
@@ -267,18 +269,20 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
} else {
|
||||
// Check predict_proba values for vectors and tensors
|
||||
auto predictedClasses = yt_pred_proba.argmax(1);
|
||||
// std::cout << model << std::endl;
|
||||
for (int i = 0; i < 9; i++) {
|
||||
REQUIRE(predictedClasses[i].item<int>() == yt_pred[i].item<int>());
|
||||
// std::cout << "{";
|
||||
for (int j = 0; j < 3; j++) {
|
||||
// std::cout << yt_pred_proba[i + init_index][j].item<double>() << ", ";
|
||||
REQUIRE(res_prob[model][i][j] ==
|
||||
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
// std::cout << "\b\b}," << std::endl;
|
||||
}
|
||||
}
|
||||
delete clf;
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
@@ -324,11 +328,15 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
|
||||
TEST_CASE("Incorrect type of data for Ld models", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
auto clfs = bayesnet::SPODELd(0);
|
||||
REQUIRE_THROWS_AS(clfs.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
auto clft = bayesnet::TANLd();
|
||||
REQUIRE_THROWS_AS(clft.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
auto clfk = bayesnet::KDBLd(0);
|
||||
REQUIRE_THROWS_AS(clfk.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
}
|
||||
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
{
|
||||
@@ -428,3 +436,49 @@ TEST_CASE("Check KDB loop detection", "[Models]")
|
||||
REQUIRE_NOTHROW(clf.test_add_m_edges(features, 0, S, weights));
|
||||
REQUIRE_NOTHROW(clf.test_add_m_edges(features, 1, S, weights));
|
||||
}
|
||||
TEST_CASE("Local discretization hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clfs = bayesnet::SPODELd(0);
|
||||
clfs.setHyperparameters({
|
||||
{"max_iterations", 7},
|
||||
{"verbose_convergence", true},
|
||||
});
|
||||
REQUIRE_NOTHROW(clfs.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
|
||||
REQUIRE(clfs.getStatus() == bayesnet::NORMAL);
|
||||
auto clfk = bayesnet::KDBLd(0);
|
||||
clfk.setHyperparameters({
|
||||
{"k", 3},
|
||||
{"theta", 1e-4},
|
||||
});
|
||||
REQUIRE_NOTHROW(clfk.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
|
||||
REQUIRE(clfk.getStatus() == bayesnet::NORMAL);
|
||||
auto clfa = bayesnet::AODELd();
|
||||
clfa.setHyperparameters({
|
||||
{"ld_proposed_cuts", 9},
|
||||
{"ld_algorithm", "BINQ"},
|
||||
});
|
||||
REQUIRE_NOTHROW(clfa.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
|
||||
REQUIRE(clfa.getStatus() == bayesnet::NORMAL);
|
||||
auto clft = bayesnet::TANLd();
|
||||
clft.setHyperparameters({
|
||||
{"ld_proposed_cuts", 7},
|
||||
{"mdlp_max_depth", 5},
|
||||
{"mdlp_min_length", 3},
|
||||
{"ld_algorithm", "MDLP"},
|
||||
});
|
||||
REQUIRE_NOTHROW(clft.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
|
||||
REQUIRE(clft.getStatus() == bayesnet::NORMAL);
|
||||
clft.setHyperparameters({
|
||||
{"ld_proposed_cuts", 9},
|
||||
{"ld_algorithm", "BINQ"},
|
||||
});
|
||||
REQUIRE_NOTHROW(clft.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
|
||||
REQUIRE(clft.getStatus() == bayesnet::NORMAL);
|
||||
clft.setHyperparameters({
|
||||
{"ld_proposed_cuts", 5},
|
||||
{"ld_algorithm", "BINU"},
|
||||
});
|
||||
REQUIRE_NOTHROW(clft.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
|
||||
REQUIRE(clft.getStatus() == bayesnet::NORMAL);
|
||||
}
|
||||
|
@@ -382,10 +382,11 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
|
||||
// Self assignment should not corrupt the network
|
||||
net = net;
|
||||
|
||||
auto all_features = raw.features;
|
||||
all_features.push_back(raw.className);
|
||||
REQUIRE(net.getNumEdges() == original_edges);
|
||||
REQUIRE(net.getNodes().size() == original_nodes);
|
||||
REQUIRE(net.getFeatures() == raw.features);
|
||||
REQUIRE(net.getFeatures() == all_features);
|
||||
REQUIRE(net.getClassName() == raw.className);
|
||||
}
|
||||
SECTION("Test operator== topology comparison")
|
||||
@@ -457,13 +458,14 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
// Destroy original
|
||||
net1.reset();
|
||||
|
||||
// Test predictions still work
|
||||
std::vector<std::vector<int>> test = { {1}, {2}, {0}, {1} };
|
||||
REQUIRE_NOTHROW(net2->predict(test));
|
||||
|
||||
// net2 should still be valid and functional
|
||||
net2->initialize();
|
||||
REQUIRE_NOTHROW(net2->addNode("NewNode"));
|
||||
REQUIRE(net2->getNodes().count("NewNode") == 1);
|
||||
|
||||
// Test predictions still work
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1} };
|
||||
REQUIRE_NOTHROW(net2->predict(test));
|
||||
}
|
||||
SECTION("Test complex topology copy")
|
||||
{
|
||||
|
@@ -159,3 +159,46 @@ TEST_CASE("TEST MinFill method", "[Node]")
|
||||
REQUIRE(node_3.minFill() == 3);
|
||||
REQUIRE(node_4.minFill() == 1);
|
||||
}
|
||||
TEST_CASE("Test operator =", "[Node]")
|
||||
{
|
||||
// Generate a test to test the operator = of the Node class
|
||||
// Create a node with 3 parents and 2 children
|
||||
auto node = bayesnet::Node("N1");
|
||||
auto parent_1 = bayesnet::Node("P1");
|
||||
parent_1.setNumStates(3);
|
||||
auto child_1 = bayesnet::Node("H1");
|
||||
child_1.setNumStates(2);
|
||||
node.addParent(&parent_1);
|
||||
node.addChild(&child_1);
|
||||
// Create a cpt in the node using computeCPT
|
||||
auto dataset = torch::tensor({ {1, 0, 0, 1}, {0, 1, 2, 1}, {0, 1, 1, 0} });
|
||||
auto states = std::vector<int>({ 2, 3, 3 });
|
||||
auto features = std::vector<std::string>{ "N1", "P1", "H1" };
|
||||
auto className = std::string("Class");
|
||||
auto weights = torch::tensor({ 1.0, 1.0, 1.0, 1.0 }, torch::kDouble);
|
||||
node.setNumStates(2);
|
||||
node.computeCPT(dataset, features, 0.0, weights);
|
||||
// Get the cpt of the node
|
||||
auto cpt = node.getCPT();
|
||||
// Check that the cpt is not empty
|
||||
REQUIRE(cpt.numel() > 0);
|
||||
// Check that the cpt has the correct dimensions
|
||||
auto dimensions = cpt.sizes();
|
||||
REQUIRE(dimensions.size() == 2);
|
||||
REQUIRE(dimensions[0] == 2); // Number of states of the node
|
||||
REQUIRE(dimensions[1] == 3); // Number of states of the first parent
|
||||
// Create a copy of the node
|
||||
auto node_copy = node;
|
||||
// Check that the copy has not any parents or children
|
||||
auto parents = node_copy.getParents();
|
||||
auto children = node_copy.getChildren();
|
||||
REQUIRE(parents.size() == 0);
|
||||
REQUIRE(children.size() == 0);
|
||||
// Check that the copy has the same name
|
||||
REQUIRE(node_copy.getName() == "N1");
|
||||
// Check that the copy has the same cpt
|
||||
auto cpt_copy = node_copy.getCPT();
|
||||
REQUIRE(cpt_copy.equal(cpt));
|
||||
// Check that the copy has the same number of states
|
||||
REQUIRE(node_copy.getNumStates() == node.getNumStates());
|
||||
}
|
Reference in New Issue
Block a user