Complete implementation with tests

This commit is contained in:
2025-07-08 11:42:20 +02:00
parent 2c7352ac38
commit ed380b1494
13 changed files with 255 additions and 170 deletions

View File

@@ -8,7 +8,7 @@
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/Doctorado-ML/BayesNet)
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es&logo=gitea)
[![Coverage Badge](https://img.shields.io/badge/Coverage-98,0%25-green)](https://gitea.rmontanana.es/rmontanana/BayesNet)
[![Coverage Badge](https://img.shields.io/badge/Coverage-98,5%25-green)](https://gitea.rmontanana.es/rmontanana/BayesNet)
[![DOI](https://zenodo.org/badge/667782806.svg)](https://doi.org/10.5281/zenodo.14210344)
Bayesian Network Classifiers library

View File

@@ -14,33 +14,29 @@ namespace bayesnet {
validHyperparameters.push_back("k");
validHyperparameters.push_back("theta");
}
void KDBLd::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
hyperparameters.erase("k");
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
hyperparameters.erase("theta");
}
Proposal::setHyperparameters(hyperparameters);
}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
return commonFit(features_, className_, states_, smoothing);
}
KDBLd& KDBLd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
return commonFit(features_, className_, states_, smoothing);
}
// Use iterative local discretization instead of the two-phase approach
KDBLd& KDBLd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
features = features_;
className = className_;
states = iterativeLocalDiscretization(y, static_cast<KDB*>(this), dataset, features, className, states_, smoothing);
// Final fit with converged discretization
KDB::fit(dataset, features, className, states, smoothing);
return *this;
}
torch::Tensor KDBLd::predict(torch::Tensor& X)

View File

@@ -15,8 +15,15 @@ namespace bayesnet {
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
KDBLd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
KDBLd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
std::vector<std::string> graph(const std::string& name = "KDB") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override
{
auto hyperparameters = hyperparameters_;
Proposal::setHyperparameters(hyperparameters);
KDB::setHyperparameters(hyperparameters);
}
torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };

View File

@@ -11,6 +11,7 @@
#include "Classifier.h"
#include "KDB.h"
#include "TAN.h"
#include "SPODE.h"
#include "KDBLd.h"
#include "TANLd.h"
@@ -18,9 +19,8 @@ namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_)
{
}
void Proposal::setHyperparameters(const nlohmann::json& hyperparameters_)
void Proposal::setHyperparameters(nlohmann::json& hyperparameters)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("ld_proposed_cuts")) {
ld_params.proposed_cuts = hyperparameters["ld_proposed_cuts"];
hyperparameters.erase("ld_proposed_cuts");
@@ -55,9 +55,6 @@ namespace bayesnet {
convergence_params.verbose = hyperparameters["verbose_convergence"];
hyperparameters.erase("verbose_convergence");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters for Proposal: " + hyperparameters.dump());
}
}
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
@@ -228,45 +225,6 @@ namespace bayesnet {
return currentStates;
}
double Proposal::computeLogLikelihood(Network& model, const torch::Tensor& dataset)
{
double logLikelihood = 0.0;
int n_samples = dataset.size(0);
int n_features = dataset.size(1);
for (int i = 0; i < n_samples; ++i) {
double sampleLogLikelihood = 0.0;
// Get class value for this sample
int classValue = dataset[i][n_features - 1].item<int>();
// Compute log-likelihood for each feature given its parents and class
for (const auto& node : model.getNodes()) {
if (node.first == model.getClassName()) {
// For class node, add log P(class)
auto classCounts = node.second->getCPT();
double classProb = classCounts[classValue].item<double>() / dataset.size(0);
sampleLogLikelihood += std::log(std::max(classProb, 1e-10));
} else {
// For feature nodes, add log P(feature | parents, class)
int featureIdx = std::distance(model.getFeatures().begin(),
std::find(model.getFeatures().begin(),
model.getFeatures().end(),
node.first));
int featureValue = dataset[i][featureIdx].item<int>();
// Simplified probability computation - in practice would need full CPT lookup
double featureProb = 0.1; // Placeholder - would compute from CPT
sampleLogLikelihood += std::log(std::max(featureProb, 1e-10));
}
}
logLikelihood += sampleLogLikelihood;
}
return logLikelihood;
}
// Explicit template instantiation for common classifier types
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<KDB>(
const torch::Tensor&, KDB*, torch::Tensor&, const std::vector<std::string>&,
@@ -275,4 +233,7 @@ namespace bayesnet {
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<TAN>(
const torch::Tensor&, TAN*, torch::Tensor&, const std::vector<std::string>&,
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<SPODE>(
const torch::Tensor&, SPODE*, torch::Tensor&, const std::vector<std::string>&,
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
}

View File

@@ -19,7 +19,7 @@ namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
void setHyperparameters(const nlohmann::json& hyperparameters_);
void setHyperparameters(nlohmann::json& hyperparameters_);
protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X);
@@ -61,7 +61,6 @@ namespace bayesnet {
};
private:
std::vector<int> factorize(const std::vector<std::string>& labels_t);
double computeLogLikelihood(Network& model, const torch::Tensor& dataset);
torch::Tensor& pDataset; // (n+1)xm tensor
std::vector<std::string>& pFeatures;
std::string& pClassName;

View File

@@ -34,12 +34,8 @@ namespace bayesnet {
{
features = features_;
className = className_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
states = iterativeLocalDiscretization(y, static_cast<SPODE*>(this), dataset, features, className, states_, smoothing);
SPODE::fit(dataset, features, className, states, smoothing);
states = localDiscretizationProposal(states, model);
return *this;
}
torch::Tensor SPODELd::predict(torch::Tensor& X)

View File

@@ -18,6 +18,12 @@ namespace bayesnet {
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override
{
auto hyperparameters = hyperparameters_;
Proposal::setHyperparameters(hyperparameters);
SPODE::setHyperparameters(hyperparameters);
}
torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };

View File

@@ -12,17 +12,26 @@ namespace bayesnet {
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
return commonFit(features_, className_, states_, smoothing);
}
TANLd& TANLd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
return commonFit(features_, className_, states_, smoothing);
}
// Use iterative local discretization instead of the two-phase approach
TANLd& TANLd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
features = features_;
className = className_;
states = iterativeLocalDiscretization(y, static_cast<TAN*>(this), dataset, features, className, states_, smoothing);
// Final fit with converged discretization
TAN::fit(dataset, features, className, states, smoothing);
return *this;
}
torch::Tensor TANLd::predict(torch::Tensor& X)

View File

@@ -16,7 +16,15 @@ namespace bayesnet {
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
TANLd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
TANLd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override
{
auto hyperparameters = hyperparameters_;
Proposal::setHyperparameters(hyperparameters);
TAN::setHyperparameters(hyperparameters);
}
torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
};

View File

@@ -17,6 +17,10 @@ namespace bayesnet {
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override
{
hyperparameters = hyperparameters_;
}
protected:
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
void buildModel(const torch::Tensor& weights) override;

View File

@@ -31,9 +31,9 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
{{"diabetes", "SPODE"}, 0.802083},
{{"diabetes", "TAN"}, 0.821615},
{{"diabetes", "AODELd"}, 0.8125f},
{{"diabetes", "KDBLd"}, 0.80208f},
{{"diabetes", "KDBLd"}, 0.804688f},
{{"diabetes", "SPODELd"}, 0.7890625f},
{{"diabetes", "TANLd"}, 0.803385437f},
{{"diabetes", "TANLd"}, 0.8125f},
{{"diabetes", "BoostAODE"}, 0.83984f},
// Ecoli
{{"ecoli", "AODE"}, 0.889881},
@@ -42,9 +42,9 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
{{"ecoli", "SPODE"}, 0.880952},
{{"ecoli", "TAN"}, 0.892857},
{{"ecoli", "AODELd"}, 0.875f},
{{"ecoli", "KDBLd"}, 0.880952358f},
{{"ecoli", "KDBLd"}, 0.872024f},
{{"ecoli", "SPODELd"}, 0.839285731f},
{{"ecoli", "TANLd"}, 0.848214269f},
{{"ecoli", "TANLd"}, 0.869047642f},
{{"ecoli", "BoostAODE"}, 0.89583f},
// Glass
{{"glass", "AODE"}, 0.79439},
@@ -53,9 +53,9 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
{{"glass", "SPODE"}, 0.775701},
{{"glass", "TAN"}, 0.827103},
{{"glass", "AODELd"}, 0.799065411f},
{{"glass", "KDBLd"}, 0.82710278f},
{{"glass", "KDBLd"}, 0.864485979f},
{{"glass", "SPODELd"}, 0.780373812f},
{{"glass", "TANLd"}, 0.869158864f},
{{"glass", "TANLd"}, 0.831775725f},
{{"glass", "BoostAODE"}, 0.84579f},
// Iris
{{"iris", "AODE"}, 0.973333},
@@ -68,23 +68,23 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
{{"iris", "SPODELd"}, 0.96f},
{{"iris", "TANLd"}, 0.97333f},
{{"iris", "BoostAODE"}, 0.98f} };
std::map<std::string, bayesnet::BaseClassifier*> models{ {"AODE", new bayesnet::AODE()},
{"AODELd", new bayesnet::AODELd()},
{"BoostAODE", new bayesnet::BoostAODE()},
{"KDB", new bayesnet::KDB(2)},
{"KDBLd", new bayesnet::KDBLd(2)},
{"XSPODE", new bayesnet::XSpode(1)},
{"SPODE", new bayesnet::SPODE(1)},
{"SPODELd", new bayesnet::SPODELd(1)},
{"TAN", new bayesnet::TAN()},
{"TANLd", new bayesnet::TANLd()} };
std::map<std::string, std::unique_ptr<bayesnet::BaseClassifier>> models;
models["AODE"] = std::make_unique<bayesnet::AODE>();
models["AODELd"] = std::make_unique<bayesnet::AODELd>();
models["BoostAODE"] = std::make_unique<bayesnet::BoostAODE>();
models["KDB"] = std::make_unique<bayesnet::KDB>(2);
models["KDBLd"] = std::make_unique<bayesnet::KDBLd>(2);
models["XSPODE"] = std::make_unique<bayesnet::XSpode>(1);
models["SPODE"] = std::make_unique<bayesnet::SPODE>(1);
models["SPODELd"] = std::make_unique<bayesnet::SPODELd>(1);
models["TAN"] = std::make_unique<bayesnet::TAN>();
models["TANLd"] = std::make_unique<bayesnet::TANLd>();
std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "XSPODE", "SPODELd", "TAN", "TANLd");
auto clf = models[name];
auto clf = std::move(models[name]);
SECTION("Test " + name + " classifier")
{
for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) {
auto clf = models[name];
auto discretize = name.substr(name.length() - 2) != "Ld";
auto raw = RawDatasets(file_name, discretize);
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
@@ -101,7 +101,6 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
INFO("Checking version of " << name << " classifier");
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
}
delete clf;
}
TEST_CASE("Models features & Graph", "[Models]")
{
@@ -133,7 +132,7 @@ TEST_CASE("Models features & Graph", "[Models]")
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 5);
REQUIRE(clf.getNumberOfEdges() == 7);
REQUIRE(clf.getNumberOfStates() == 27);
REQUIRE(clf.getNumberOfStates() == 26);
REQUIRE(clf.getClassNumStates() == 3);
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
"petallength -> sepallength, ", "petalwidth -> ",
@@ -149,7 +148,6 @@ TEST_CASE("Get num features & num edges", "[Models]")
REQUIRE(clf.getNumberOfNodes() == 5);
REQUIRE(clf.getNumberOfEdges() == 8);
}
TEST_CASE("Model predict_proba", "[Models]")
{
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting", "TANLd", "SPODELd", "KDBLd");
@@ -180,15 +178,15 @@ TEST_CASE("Model predict_proba", "[Models]")
{0.0284828, 0.770524, 0.200993},
{0.0213182, 0.857189, 0.121493},
{0.00868436, 0.949494, 0.0418215} });
auto res_prob_tanld = std::vector<std::vector<double>>({ {0.000544493, 0.995796, 0.00365992 },
{0.000908092, 0.997268, 0.00182429 },
{0.000908092, 0.997268, 0.00182429 },
{0.000908092, 0.997268, 0.00182429 },
{0.00228423, 0.994645, 0.00307078 },
{0.00120539, 0.0666788, 0.932116 },
{0.00361847, 0.979203, 0.017179 },
{0.00483293, 0.985326, 0.00984064 },
{0.000595606, 0.9977, 0.00170441 } });
auto res_prob_tanld = std::vector<std::vector<double>>({ {0.000597557, 0.9957, 0.00370254},
{0.000731377, 0.997914, 0.0013544},
{0.000731377, 0.997914, 0.0013544},
{0.000731377, 0.997914, 0.0013544},
{0.000838614, 0.998122, 0.00103923},
{0.00130852, 0.0659492, 0.932742},
{0.00365946, 0.979412, 0.0169281},
{0.00435035, 0.986248, 0.00940212},
{0.000583815, 0.997746, 0.00167066} });
auto res_prob_spodeld = std::vector<std::vector<double>>({ {0.000908024, 0.993742, 0.00535024 },
{0.00187726, 0.99167, 0.00645308 },
{0.00187726, 0.99167, 0.00645308 },
@@ -216,29 +214,33 @@ TEST_CASE("Model predict_proba", "[Models]")
{"TANLd", res_prob_tanld},
{"SPODELd", res_prob_spodeld},
{"KDBLd", res_prob_kdbld} };
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()},
{"SPODE", new bayesnet::SPODE(0)},
{"BoostAODEproba", new bayesnet::BoostAODE(false)},
{"BoostAODEvoting", new bayesnet::BoostAODE(true)},
{"TANLd", new bayesnet::TANLd()},
{"SPODELd", new bayesnet::SPODELd(0)},
{"KDBLd", new bayesnet::KDBLd(2)} };
std::map<std::string, std::unique_ptr<bayesnet::BaseClassifier>> models;
models["TAN"] = std::make_unique<bayesnet::TAN>();
models["SPODE"] = std::make_unique<bayesnet::SPODE>(0);
models["BoostAODEproba"] = std::make_unique<bayesnet::BoostAODE>(false);
models["BoostAODEvoting"] = std::make_unique<bayesnet::BoostAODE>(true);
models["TANLd"] = std::make_unique<bayesnet::TANLd>();
models["SPODELd"] = std::make_unique<bayesnet::SPODELd>(0);
models["KDBLd"] = std::make_unique<bayesnet::KDBLd>(2);
int init_index = 78;
SECTION("Test " + model + " predict_proba")
{
INFO("Testing " << model << " predict_proba");
auto ld_model = model.substr(model.length() - 2) == "Ld";
auto discretize = !ld_model;
auto raw = RawDatasets("iris", discretize);
auto clf = models[model];
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
auto yt_pred_proba = clf->predict_proba(raw.Xt);
auto yt_pred = clf->predict(raw.Xt);
auto& clf = *models[model];
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
auto yt_pred_proba = clf.predict_proba(raw.Xt);
auto yt_pred = clf.predict(raw.Xt);
std::vector<int> y_pred;
std::vector<std::vector<double>> y_pred_proba;
if (!ld_model) {
y_pred = clf->predict(raw.Xv);
y_pred_proba = clf->predict_proba(raw.Xv);
y_pred = clf.predict(raw.Xv);
y_pred_proba = clf.predict_proba(raw.Xv);
REQUIRE(y_pred.size() == y_pred_proba.size());
REQUIRE(y_pred.size() == yt_pred.size(0));
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
@@ -267,18 +269,20 @@ TEST_CASE("Model predict_proba", "[Models]")
} else {
// Check predict_proba values for vectors and tensors
auto predictedClasses = yt_pred_proba.argmax(1);
// std::cout << model << std::endl;
for (int i = 0; i < 9; i++) {
REQUIRE(predictedClasses[i].item<int>() == yt_pred[i].item<int>());
// std::cout << "{";
for (int j = 0; j < 3; j++) {
// std::cout << yt_pred_proba[i + init_index][j].item<double>() << ", ";
REQUIRE(res_prob[model][i][j] ==
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
}
// std::cout << "\b\b}," << std::endl;
}
}
delete clf;
}
}
TEST_CASE("AODE voting-proba", "[Models]")
{
auto raw = RawDatasets("glass", true);
@@ -324,11 +328,15 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
}
TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
TEST_CASE("Incorrect type of data for Ld models", "[Models]")
{
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::SPODELd(0);
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
auto clfs = bayesnet::SPODELd(0);
REQUIRE_THROWS_AS(clfs.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
auto clft = bayesnet::TANLd();
REQUIRE_THROWS_AS(clft.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
auto clfk = bayesnet::KDBLd(0);
REQUIRE_THROWS_AS(clfk.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
}
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
{
@@ -428,3 +436,49 @@ TEST_CASE("Check KDB loop detection", "[Models]")
REQUIRE_NOTHROW(clf.test_add_m_edges(features, 0, S, weights));
REQUIRE_NOTHROW(clf.test_add_m_edges(features, 1, S, weights));
}
TEST_CASE("Local discretization hyperparameters", "[Models]")
{
auto raw = RawDatasets("iris", false);
auto clfs = bayesnet::SPODELd(0);
clfs.setHyperparameters({
{"max_iterations", 7},
{"verbose_convergence", true},
});
REQUIRE_NOTHROW(clfs.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
REQUIRE(clfs.getStatus() == bayesnet::NORMAL);
auto clfk = bayesnet::KDBLd(0);
clfk.setHyperparameters({
{"k", 3},
{"theta", 1e-4},
});
REQUIRE_NOTHROW(clfk.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
REQUIRE(clfk.getStatus() == bayesnet::NORMAL);
auto clfa = bayesnet::AODELd();
clfa.setHyperparameters({
{"ld_proposed_cuts", 9},
{"ld_algorithm", "BINQ"},
});
REQUIRE_NOTHROW(clfa.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
REQUIRE(clfa.getStatus() == bayesnet::NORMAL);
auto clft = bayesnet::TANLd();
clft.setHyperparameters({
{"ld_proposed_cuts", 7},
{"mdlp_max_depth", 5},
{"mdlp_min_length", 3},
{"ld_algorithm", "MDLP"},
});
REQUIRE_NOTHROW(clft.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
REQUIRE(clft.getStatus() == bayesnet::NORMAL);
clft.setHyperparameters({
{"ld_proposed_cuts", 9},
{"ld_algorithm", "BINQ"},
});
REQUIRE_NOTHROW(clft.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
REQUIRE(clft.getStatus() == bayesnet::NORMAL);
clft.setHyperparameters({
{"ld_proposed_cuts", 5},
{"ld_algorithm", "BINU"},
});
REQUIRE_NOTHROW(clft.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing));
REQUIRE(clft.getStatus() == bayesnet::NORMAL);
}

View File

@@ -382,10 +382,11 @@ TEST_CASE("Test Bayesian Network", "[Network]")
// Self assignment should not corrupt the network
net = net;
auto all_features = raw.features;
all_features.push_back(raw.className);
REQUIRE(net.getNumEdges() == original_edges);
REQUIRE(net.getNodes().size() == original_nodes);
REQUIRE(net.getFeatures() == raw.features);
REQUIRE(net.getFeatures() == all_features);
REQUIRE(net.getClassName() == raw.className);
}
SECTION("Test operator== topology comparison")
@@ -457,13 +458,14 @@ TEST_CASE("Test Bayesian Network", "[Network]")
// Destroy original
net1.reset();
// Test predictions still work
std::vector<std::vector<int>> test = { {1}, {2}, {0}, {1} };
REQUIRE_NOTHROW(net2->predict(test));
// net2 should still be valid and functional
net2->initialize();
REQUIRE_NOTHROW(net2->addNode("NewNode"));
REQUIRE(net2->getNodes().count("NewNode") == 1);
// Test predictions still work
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1} };
REQUIRE_NOTHROW(net2->predict(test));
}
SECTION("Test complex topology copy")
{

View File

@@ -159,3 +159,46 @@ TEST_CASE("TEST MinFill method", "[Node]")
REQUIRE(node_3.minFill() == 3);
REQUIRE(node_4.minFill() == 1);
}
TEST_CASE("Test operator =", "[Node]")
{
// Generate a test to test the operator = of the Node class
// Create a node with 3 parents and 2 children
auto node = bayesnet::Node("N1");
auto parent_1 = bayesnet::Node("P1");
parent_1.setNumStates(3);
auto child_1 = bayesnet::Node("H1");
child_1.setNumStates(2);
node.addParent(&parent_1);
node.addChild(&child_1);
// Create a cpt in the node using computeCPT
auto dataset = torch::tensor({ {1, 0, 0, 1}, {0, 1, 2, 1}, {0, 1, 1, 0} });
auto states = std::vector<int>({ 2, 3, 3 });
auto features = std::vector<std::string>{ "N1", "P1", "H1" };
auto className = std::string("Class");
auto weights = torch::tensor({ 1.0, 1.0, 1.0, 1.0 }, torch::kDouble);
node.setNumStates(2);
node.computeCPT(dataset, features, 0.0, weights);
// Get the cpt of the node
auto cpt = node.getCPT();
// Check that the cpt is not empty
REQUIRE(cpt.numel() > 0);
// Check that the cpt has the correct dimensions
auto dimensions = cpt.sizes();
REQUIRE(dimensions.size() == 2);
REQUIRE(dimensions[0] == 2); // Number of states of the node
REQUIRE(dimensions[1] == 3); // Number of states of the first parent
// Create a copy of the node
auto node_copy = node;
// Check that the copy has not any parents or children
auto parents = node_copy.getParents();
auto children = node_copy.getChildren();
REQUIRE(parents.size() == 0);
REQUIRE(children.size() == 0);
// Check that the copy has the same name
REQUIRE(node_copy.getName() == "N1");
// Check that the copy has the same cpt
auto cpt_copy = node_copy.getCPT();
REQUIRE(cpt_copy.equal(cpt));
// Check that the copy has the same number of states
REQUIRE(node_copy.getNumStates() == node.getNumStates());
}