Add sample_xspode
This commit is contained in:
@@ -22,4 +22,6 @@ include_directories(
|
||||
)
|
||||
|
||||
add_executable(bayesnet_sample sample.cc)
|
||||
target_link_libraries(bayesnet_sample ${FImdlp} "${TORCH_LIBRARIES}" "${BayesNet}")
|
||||
target_link_libraries(bayesnet_sample ${FImdlp} "${TORCH_LIBRARIES}" "${BayesNet}")
|
||||
add_executable(bayesnet_sample_xspode sample_xspode.cc)
|
||||
target_link_libraries(bayesnet_sample_xspode ${FImdlp} "${TORCH_LIBRARIES}" "${BayesNet}")
|
77
sample/sample_xspode.cc
Normal file
77
sample/sample_xspode.cc
Normal file
@@ -0,0 +1,77 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <ArffFiles.hpp>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <bayesnet/ensembles/BoostAODE.h>
|
||||
#include <bayesnet/classifiers/XSPODE.h>
|
||||
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
std::vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
tuple<std::vector<std::vector<int>>, std::vector<int>, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(name, class_last);
|
||||
// Get Dataset X, y
|
||||
std::vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
std::vector<std::string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
torch::Tensor Xd;
|
||||
auto states = map<std::string, std::vector<int>>();
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
}
|
||||
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
return { Xr, y, features, className, states };
|
||||
// Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||
// for (int i = 0; i < features.size(); ++i) {
|
||||
// states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
// auto item = states.at(features[i]);
|
||||
// iota(begin(item), end(item), 0);
|
||||
// Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||
// }
|
||||
// states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
// iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
// return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
if (argc < 2) {
|
||||
std::cerr << "Usage: " << argv[0] << " <file_name>" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
std::string file_name = argv[1];
|
||||
// auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
|
||||
bayesnet::BaseClassifier* clf = new bayesnet::XSpode(0); // false for not using voting in predict
|
||||
std::cout << "Library version: " << clf->getVersion() << std::endl;
|
||||
auto [X, y, features, className, states] = loadDataset(file_name, true);
|
||||
torch::Tensor weights = torch::full({ static_cast<long>(X[0].size()) }, 1.0 / X[0].size(), torch::kDouble);
|
||||
clf->fit(X, y, features, className, states, bayesnet::Smoothing_t::ORIGINAL);
|
||||
// auto score = clf.score(X, y);
|
||||
auto score = clf->score(X, y);
|
||||
std::cout << "File: " << file_name << " Model: XSpode(0) score: " << score << std::endl;
|
||||
delete clf;
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user