Complete SPODE & AODE
This commit is contained in:
@@ -4,10 +4,10 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()) {}
|
||||
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {}
|
||||
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
|
||||
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
this->states = states;
|
||||
@@ -18,34 +18,35 @@ namespace bayesnet {
|
||||
// Train models
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
models[i].fit(X, y, features, className, states);
|
||||
models[i]->fit(Xv, yv, features, className, states);
|
||||
}
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
Ensemble& Ensemble::fit(Tensor& X, Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->X = X;
|
||||
this->y = y;
|
||||
auto sizes = X.sizes();
|
||||
m = sizes[0];
|
||||
n = sizes[1];
|
||||
return build(features, className, states);
|
||||
}
|
||||
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64);
|
||||
Xv = X;
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64));
|
||||
}
|
||||
this->y = torch::tensor(y, kInt64);
|
||||
yv = y;
|
||||
return build(features, className, states);
|
||||
}
|
||||
Tensor Ensemble::predict(Tensor& X)
|
||||
{
|
||||
Tensor y_pred = torch::zeros({ X.size(0), n_models }, torch::kInt64);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, models[i].predict(X));
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ X.size(0), n_models }, kInt64);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, models[i]->predict(X));
|
||||
}
|
||||
return torch::tensor(voting(y_pred));
|
||||
}
|
||||
vector<int> Ensemble::voting(Tensor& y_pred)
|
||||
{
|
||||
auto y_pred_ = y_pred.accessor<int64_t, 2>();
|
||||
vector<int> y_pred_final;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
@@ -56,18 +57,45 @@ namespace bayesnet {
|
||||
auto indices = argsort(votes);
|
||||
y_pred_final.push_back(indices[0]);
|
||||
}
|
||||
return torch::tensor(y_pred_final, torch::kInt64);
|
||||
return y_pred_final;
|
||||
}
|
||||
float Ensemble::score(Tensor& X, Tensor& y)
|
||||
vector<int> Ensemble::predict(vector<vector<int>>& X)
|
||||
{
|
||||
Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
long m_ = X[0].size();
|
||||
long n_ = X.size();
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ m_, n_models }, kInt64);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt64));
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
|
||||
}
|
||||
vector<string> Ensemble::show()
|
||||
{
|
||||
vector<string> result;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i].show();
|
||||
auto res = models[i]->show();
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
|
Reference in New Issue
Block a user