Add parent hyperparameter to TAN & SPODE
This commit is contained in:
@@ -8,14 +8,29 @@
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root)
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void SPODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
root = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void SPODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the root node to all other nodes
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
model.addEdge(className, features[i]);
|
||||
if (i != root) {
|
||||
|
@@ -10,14 +10,15 @@
|
||||
|
||||
namespace bayesnet {
|
||||
class SPODE : public Classifier {
|
||||
private:
|
||||
int root;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int root;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -7,8 +7,20 @@
|
||||
#include "TAN.h"
|
||||
|
||||
namespace bayesnet {
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
TAN::TAN() : Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void TAN::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
parent = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
@@ -23,7 +35,10 @@ namespace bayesnet {
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
auto root = parent == -1 ? mi[mi.size() - 1].first : parent;
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
|
@@ -9,13 +9,15 @@
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int parent = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user