Complete predict and score of kdb
Change new/delete to make_unique
This commit is contained in:
@@ -4,17 +4,22 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble(BaseClassifier& model) : model(model), models(vector<BaseClassifier>()), m(0), n(0), metrics(Metrics()) {}
|
||||
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()) {}
|
||||
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
|
||||
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
this->states = states;
|
||||
auto n_classes = states[className].size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
// Build models
|
||||
train();
|
||||
// Train models
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
models[i].fit(X, y, features, className, states);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
Ensemble& Ensemble::fit(Tensor& X, Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
@@ -37,16 +42,21 @@ namespace bayesnet {
|
||||
}
|
||||
Tensor Ensemble::predict(Tensor& X)
|
||||
{
|
||||
auto m_ = X.size(0);
|
||||
auto n_ = X.size(1);
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
auto temp = X.index({ "...", i });
|
||||
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
|
||||
Tensor y_pred = torch::zeros({ X.size(0), n_models }, torch::kInt64);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, models[i].predict(X));
|
||||
}
|
||||
auto yp = model.predict(Xd);
|
||||
auto ypred = torch::tensor(yp, torch::kInt64);
|
||||
return ypred;
|
||||
auto y_pred_ = y_pred.accessor<int64_t, 2>();
|
||||
vector<int> y_pred_final;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<float> votes(states[className].size(), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += 1;
|
||||
}
|
||||
auto indices = argsort(votes);
|
||||
y_pred_final.push_back(indices[0]);
|
||||
}
|
||||
return torch::tensor(y_pred_final, torch::kInt64);
|
||||
}
|
||||
float Ensemble::score(Tensor& X, Tensor& y)
|
||||
{
|
||||
@@ -55,7 +65,11 @@ namespace bayesnet {
|
||||
}
|
||||
vector<string> Ensemble::show()
|
||||
{
|
||||
return model.show();
|
||||
vector<string> result;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i].show();
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user