Update version number and Changelog
This commit is contained in:
@@ -181,17 +181,17 @@ namespace bayesnet {
|
||||
prob_table += model->predict_proba(X) * 1.0;
|
||||
}
|
||||
// prob_table doesn't store probabilities but the sum of them
|
||||
// to have them we need to divide by the sum of the significances but we
|
||||
// don't need them to predict label values
|
||||
// to have them we need to divide by the sum of the "weights" used to
|
||||
// consider the results obtanined in the model's predict_proba.
|
||||
return prob_table.argmax(1);
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
initialize_prob_table = true;
|
||||
fitted = true;
|
||||
double alpha_t = 0;
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool exitCondition = false;
|
||||
std::unordered_set<int> featuresUsed;
|
||||
|
Reference in New Issue
Block a user