Begin implementing predict_single hyperparameter in BoostAODE
This commit is contained in:
@@ -240,10 +240,28 @@ TEST_CASE("BoostAODE order asc, desc & random", "[BayesNet]")
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
auto score2 = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret2 = clf.score(raw.Xt, raw.yt);
|
||||
INFO("order: " + order);
|
||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
TEST_CASE("BoostAODE predict_single", "[BayesNet]")
|
||||
{
|
||||
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<bool, double> scores{
|
||||
{true, 0.84579f }, { false, 0.81308f }
|
||||
};
|
||||
for (const bool kind : { true, false}) {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({
|
||||
{"predict_single", kind}, {"order", "desc" },
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("kind: " + std::string(kind ? "true" : "false"));
|
||||
REQUIRE(score == Catch::Approx(scores[kind]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[kind]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user