Add some tests and code quality badge
This commit is contained in:
@@ -207,7 +207,7 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
}
|
||||
TEST_CASE("BoostAODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
@@ -224,9 +224,53 @@ TEST_CASE("BoostAODE voting-proba", "[Models]")
|
||||
clf.dump_cpt();
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::AODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.79439f).epsilon(raw.epsilon));
|
||||
REQUIRE(score_voting == Catch::Approx(0.78972f).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_voting[67][0] == Catch::Approx(0.888889).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_proba[67][0] == Catch::Approx(0.702184).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("SPODELd dataset", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
raw.dataset.to(torch::kFloat32);
|
||||
clf.fit(raw.dataset, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
clf.setHyperparameters({
|
||||
{"k", 3},
|
||||
{"theta", 0.7},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto scoret = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("BoostAODE order asc, desc & random", "[Models]")
|
||||
{
|
||||
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<std::string, double> scores{
|
||||
{"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||
|
Reference in New Issue
Block a user