Add Makefile & tests
This commit is contained in:
12
tests/CMakeLists.txt
Normal file
12
tests/CMakeLists.txt
Normal file
@@ -0,0 +1,12 @@
|
||||
if(ENABLE_TESTING)
|
||||
set(TEST_MAIN "unit_tests")
|
||||
include_directories(src)
|
||||
SET(GCC_COVERAGE_COMPILE_FLAGS "-fprofile-arcs -ftest-coverage --coverage")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS "--coverage")
|
||||
set(TEST_SOURCES main.cc ../sample/ArffFiles.cc ../sample/CPPFImdlp.cpp ../sample/Metrics.cpp
|
||||
../src/utils.cc ../src/Network.cc ../src/Node.cc ../src/Metrics.cc ../src/BaseClassifier.cc ../src/KDB.cc
|
||||
../src/TAN.cc ../src/SPODE.cc ../src/Ensemble.cc ../src/AODE.cc ../src/Mst.cc)
|
||||
add_executable(${TEST_MAIN} ${TEST_SOURCES})
|
||||
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" Catch2::Catch2WithMain)
|
||||
add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN})
|
||||
endif(ENABLE_TESTING)
|
102
tests/main.cc
Normal file
102
tests/main.cc
Normal file
@@ -0,0 +1,102 @@
|
||||
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <torch/torch.h>
|
||||
#include "../sample/ArffFiles.h"
|
||||
#include "../sample/CPPFImdlp.h"
|
||||
#include "../src/KDB.h"
|
||||
#include "../src/TAN.h"
|
||||
#include "../src/SPODE.h"
|
||||
#include "../src/AODE.h"
|
||||
|
||||
const string PATH = "data/";
|
||||
using namespace std;
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
vector<mdlp::labels_t>Xd;
|
||||
map<string, int> maxes;
|
||||
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
auto path = "../../data/";
|
||||
map <pair<string, string>, float> scores = {
|
||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}
|
||||
};
|
||||
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto handler = ArffFiles();
|
||||
handler.load(path + static_cast<string>(file_name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
for (auto feature : handler.getAttributes()) {
|
||||
features.push_back(feature.first);
|
||||
}
|
||||
// Discretize Dataset
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
tie(Xd, maxes) = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
//scores[{file_name, "TAN"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test KDB classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
//scores[{file_name, "KDB"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODE(1);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
// scores[{file_name, "SPODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test AODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODE();
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
// scores[{file_name, "AODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(1e-6));
|
||||
}
|
||||
// for (auto scores : scores) {
|
||||
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// }
|
||||
}
|
Reference in New Issue
Block a user