Add show experiment
This commit is contained in:
@@ -43,7 +43,7 @@ namespace platform {
|
||||
result["discretized"] = discretized;
|
||||
result["stratified"] = stratified;
|
||||
result["folds"] = nfolds;
|
||||
result["seeds"] = random_seeds;
|
||||
result["seeds"] = randomSeeds;
|
||||
result["duration"] = duration;
|
||||
result["results"] = json::array();
|
||||
for (auto& r : results) {
|
||||
@@ -65,6 +65,10 @@ namespace platform {
|
||||
j["test_time_std"] = r.getTestTimeStd();
|
||||
j["time"] = r.getTestTime() + r.getTrainTime();
|
||||
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
|
||||
j["scores_train"] = r.getScoresTrain();
|
||||
j["scores_test"] = r.getScoresTest();
|
||||
j["times_train"] = r.getTimesTrain();
|
||||
j["times_test"] = r.getTimesTest();
|
||||
j["nodes"] = r.getNodes();
|
||||
j["leaves"] = r.getLeaves();
|
||||
j["depth"] = r.getDepth();
|
||||
@@ -79,6 +83,11 @@ namespace platform {
|
||||
file << data;
|
||||
file.close();
|
||||
}
|
||||
void Experiment::show()
|
||||
{
|
||||
json data = build_json();
|
||||
cout << data.dump(4) << endl;
|
||||
}
|
||||
Result cross_validation(Fold* fold, string model_name, torch::Tensor& Xt, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states)
|
||||
{
|
||||
auto classifiers = map<string, bayesnet::BaseClassifier*>({
|
||||
@@ -101,7 +110,6 @@ namespace platform {
|
||||
cout << "doing Fold: " << flush;
|
||||
for (int i = 0; i < k; i++) {
|
||||
bayesnet::BaseClassifier* model = classifiers[model_name];
|
||||
result.setModelVersion(model->getVersion());
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(i);
|
||||
auto train_t = torch::tensor(train);
|
||||
@@ -122,8 +130,9 @@ namespace platform {
|
||||
test_time[i] = test_timer.getDuration();
|
||||
accuracy_train[i] = accuracy_train_value;
|
||||
accuracy_test[i] = accuracy_test_value;
|
||||
|
||||
}
|
||||
cout << "end." << endl;
|
||||
cout << "end. " << flush;
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
|
||||
|
Reference in New Issue
Block a user