Refactor Smoothing type to its own file
Add log to boost
This commit is contained in:
@@ -27,7 +27,7 @@ namespace bayesnet {
|
||||
class Boost : public Ensemble {
|
||||
public:
|
||||
explicit Boost(bool predict_voting = false);
|
||||
virtual ~Boost() = default;
|
||||
virtual ~Boost() override = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
std::vector<int> featureSelection(torch::Tensor& weights_);
|
||||
@@ -38,11 +38,11 @@ namespace bayesnet {
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
std::string order_algorithm = Orders.DESC; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
std::string select_features_algorithm; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true
|
||||
|
Reference in New Issue
Block a user