Refactor Smoothing type to its own file

Add log to boost
This commit is contained in:
2025-03-08 14:04:08 +01:00
parent 81fd7df7f0
commit b987dcbcc4
9 changed files with 41 additions and 23 deletions

View File

@@ -27,7 +27,7 @@ namespace bayesnet {
class Boost : public Ensemble {
public:
explicit Boost(bool predict_voting = false);
virtual ~Boost() = default;
virtual ~Boost() override = default;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
protected:
std::vector<int> featureSelection(torch::Tensor& weights_);
@@ -38,11 +38,11 @@ namespace bayesnet {
// Hyperparameters
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
int maxTolerance = 3;
std::string order_algorithm; // order to process the KBest features asc, desc, rand
std::string order_algorithm = Orders.DESC; // order to process the KBest features asc, desc, rand
bool convergence = true; //if true, stop when the model does not improve
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
bool selectFeatures = false; // if true, use feature selection
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
std::string select_features_algorithm; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true