Add predict_proba to Ld classifiers

This commit is contained in:
2025-05-12 19:47:04 +02:00
parent 8a02a3a5cb
commit b11620bbe8
12 changed files with 116 additions and 44 deletions

View File

@@ -4,9 +4,22 @@
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <map>
#include <string>
#include <ArffFiles/ArffFiles.hpp>
#include <fimdlp/CPPFImdlp.h>
#include <bayesnet/ensembles/XBAODE.h>
#include <bayesnet/classifiers/TANLd.h>
#include <bayesnet/classifiers/KDBLd.h>
#include <bayesnet/ensembles/AODELd.h>
torch::Tensor matrix2tensor(const std::vector<std::vector<float>>& matrix)
{
auto tensor = torch::empty({ static_cast<int>(matrix.size()), static_cast<int>(matrix[0].size()) }, torch::kFloat32);
for (int i = 0; i < matrix.size(); ++i) {
tensor.index_put_({ i, "..." }, torch::tensor(matrix[i], torch::kFloat32));
}
return tensor;
}
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
@@ -19,32 +32,40 @@ std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, m
}
return Xd;
}
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last)
std::tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string> loadArff(const std::string& name, bool class_last)
{
auto handler = ArffFiles();
handler.load(name, class_last);
// Get Dataset X, y
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
std::vector<mdlp::samples_t> X = handler.getX();
mdlp::labels_t y = handler.getY();
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
torch::Tensor Xd;
auto states = map<std::string, std::vector<int>>();
auto Xr = discretizeDataset(X, y);
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
}
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
auto Xt = matrix2tensor(X);
auto yt = torch::tensor(y, torch::kInt32);
return { Xt, yt, features, handler.getClassName() };
}
// tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last)
// {
// auto [X, y, features, className] = loadArff(name, class_last);
// // Discretize the dataset
// torch::Tensor Xd;
// auto states = map<std::string, std::vector<int>>();
// // Fill the class states
// states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
// iota(begin(states.at(className)), end(states.at(className)), 0);
// auto Xr = discretizeDataset(X, y);
// Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
// for (int i = 0; i < features.size(); ++i) {
// states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
// auto item = states.at(features[i]);
// iota(begin(item), end(item), 0);
// Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
// }
// auto yt = torch::tensor(y, torch::kInt32);
// return { Xd, yt, features, className, states };
// }
int main(int argc, char* argv[])
{
@@ -53,29 +74,42 @@ int main(int argc, char* argv[])
return 1;
}
std::string file_name = argv[1];
torch::Tensor X, y;
std::vector<std::string> features;
std::string className;
map<std::string, std::vector<int>> states;
auto clf = bayesnet::XBAODE(); // false for not using voting in predict
std::cout << "Library version: " << clf.getVersion() << std::endl;
tie(X, y, features, className, states) = loadDataset(file_name, true);
torch::Tensor weights = torch::full({ X.size(1) }, 15, torch::kDouble);
torch::Tensor dataset;
try {
auto yresized = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
dataset = torch::cat({ X, yresized }, 0);
std::string model_name = argv[2];
std::map<std::string, bayesnet::Classifier*> models{ {"TANLd", new bayesnet::TANLd()}, {"KDBLd", new bayesnet::KDBLd(2)}, {"AODELd", new bayesnet::AODELd() }
};
if (models.find(model_name) == models.end()) {
std::cerr << "Model not found: " << model_name << std::endl;
return 1;
}
catch (const std::exception& e) {
std::stringstream oss;
oss << "* Error in X and y dimensions *\n";
oss << "X dimensions: " << dataset.sizes() << "\n";
oss << "y dimensions: " << y.sizes();
throw std::runtime_error(oss.str());
auto clf = models[model_name];
std::cout << "Library version: " << clf->getVersion() << std::endl;
// auto [X, y, features, className, states] = loadDataset(file_name, true);
auto [Xt, yt, features, className] = loadArff(file_name, true);
std::map<std::string, std::vector<int>> states;
// int m = Xt.size(1);
// auto weights = torch::full({ m }, 1 / m, torch::kDouble);
// auto dataset = buildDataset(Xv, yv);
// try {
// auto yresized = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
// dataset = torch::cat({ X, yresized }, 0);
// }
// catch (const std::exception& e) {
// std::stringstream oss;
// oss << "* Error in X and y dimensions *\n";
// oss << "X dimensions: " << dataset.sizes() << "\n";
// oss << "y dimensions: " << y.sizes();
// throw std::runtime_error(oss.str());
// }
clf->fit(Xt, yt, features, className, states, bayesnet::Smoothing_t::ORIGINAL);
auto total = yt.size(0);
auto y_proba = clf->predict_proba(Xt);
auto y_pred = y_proba.argmax(1);
auto accuracy_value = (y_pred == yt).sum().item<float>() / total;
auto score = clf->score(Xt, yt);
std::cout << "File: " << file_name << " Model: " << model_name << " score: " << score << " Computed accuracy: " << accuracy_value << std::endl;
for (const auto clf : models) {
delete clf.second;
}
clf.fit(dataset, features, className, states, weights, bayesnet::Smoothing_t::LAPLACE);
auto score = clf.score(X, y);
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
return 0;
}