Add hyperparameter convergence_best
move test libraries to test folder
This commit is contained in:
@@ -37,7 +37,7 @@
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-04-21 17:30:26</td>
|
||||
<td class="headerValue">2024-04-29 20:48:03</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
@@ -69,40 +69,40 @@
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include "TAN.h"</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : </span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 47 : TAN::TAN() : Classifier(Network()) {}</span></span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 517 : TAN::TAN() : Classifier(Network()) {}</span></span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : </span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 13 : void TAN::buildModel(const torch::Tensor& weights)</span></span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 143 : void TAN::buildModel(const torch::Tensor& weights)</span></span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : {</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : // 0. Add all nodes to the model</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 13 : addNodes();</span></span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 143 : addNodes();</span></span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : // 1. Compute mutual information between each feature and the class and set the root node</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : // as the highest mutual information with the class</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 13 : auto mi = std::vector <std::pair<int, float >>();</span></span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 39 : torch::Tensor class_dataset = dataset.index({ -1, "..." });</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 89 : for (int i = 0; i < static_cast<int>(features.size()); ++i) {</span></span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 228 : torch::Tensor feature_dataset = dataset.index({ i, "..." });</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 76 : auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 76 : mi.push_back({ i, mi_value });</span></span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 76 : }</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 175 : sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});</span></span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 13 : auto root = mi[mi.size() - 1].first;</span></span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 143 : auto mi = std::vector <std::pair<int, float >>();</span></span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 429 : torch::Tensor class_dataset = dataset.index({ -1, "..." });</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 979 : for (int i = 0; i < static_cast<int>(features.size()); ++i) {</span></span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 2508 : torch::Tensor feature_dataset = dataset.index({ i, "..." });</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 836 : auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 836 : mi.push_back({ i, mi_value });</span></span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 836 : }</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 1925 : sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});</span></span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 143 : auto root = mi[mi.size() - 1].first;</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> : // 2. Compute mutual information between each feature and the class</span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 13 : auto weights_matrix = metrics.conditionalEdge(weights);</span></span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 143 : auto weights_matrix = metrics.conditionalEdge(weights);</span></span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : // 3. Compute the maximum spanning tree</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 13 : auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);</span></span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 143 : auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);</span></span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> : // 4. Add edges from the maximum spanning tree to the model</span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 76 : for (auto i = 0; i < mst.size(); ++i) {</span></span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 63 : auto [from, to] = mst[i];</span></span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 63 : model.addEdge(features[from], features[to]);</span></span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 836 : for (auto i = 0; i < mst.size(); ++i) {</span></span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 693 : auto [from, to] = mst[i];</span></span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 693 : model.addEdge(features[from], features[to]);</span></span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> : }</span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> : // 5. Add edges from the class to all features</span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 89 : for (auto feature : features) {</span></span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 76 : model.addEdge(className, feature);</span></span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 76 : }</span></span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 102 : }</span></span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 2 : std::vector<std::string> TAN::graph(const std::string& title) const</span></span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 979 : for (auto feature : features) {</span></span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 836 : model.addEdge(className, feature);</span></span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 836 : }</span></span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 1122 : }</span></span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 22 : std::vector<std::string> TAN::graph(const std::string& title) const</span></span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> : {</span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 2 : return model.graph(title);</span></span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 22 : return model.graph(title);</span></span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> : }</span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> : }</span>
|
||||
</pre>
|
||||
|
Reference in New Issue
Block a user