Fix CFS merit computation error

This commit is contained in:
2025-06-01 13:54:18 +02:00
parent da357ac5ba
commit ad72bb355b
6 changed files with 164 additions and 137 deletions

View File

@@ -11,7 +11,8 @@
#include "TestUtils.h"
#include "bayesnet/ensembles/XBA2DE.h"
TEST_CASE("Normal test", "[XBA2DE]") {
TEST_CASE("Normal test", "[XBA2DE]")
{
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::XBA2DE();
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
@@ -25,37 +26,38 @@ TEST_CASE("Normal test", "[XBA2DE]") {
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(1.0f));
REQUIRE(clf.graph().size() == 1);
}
TEST_CASE("Feature_select CFS", "[XBA2DE]") {
TEST_CASE("Feature_select CFS", "[XBA2DE]")
{
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::XBA2DE();
clf.setHyperparameters({{"select_features", "CFS"}});
clf.setHyperparameters({ {"select_features", "CFS"} });
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 220);
REQUIRE(clf.getNumberOfEdges() == 506);
REQUIRE(clf.getNumberOfNodes() == 360);
REQUIRE(clf.getNumberOfEdges() == 828);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
REQUIRE(clf.getNotes()[1] == "Number of models: 22");
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 9 of 9 with CFS");
REQUIRE(clf.getNotes()[1] == "Number of models: 36");
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(0.720930219));
}
TEST_CASE("Feature_select IWSS", "[XBA2DE]") {
TEST_CASE("Feature_select IWSS", "[XBA2DE]")
{
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::XBA2DE();
clf.setHyperparameters({{"select_features", "IWSS"}, {"threshold", 0.5}});
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5} });
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 220);
REQUIRE(clf.getNumberOfEdges() == 506);
REQUIRE(clf.getNotes().size() == 4);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
REQUIRE(clf.getNotes()[1] == "Convergence threshold reached & 15 models eliminated");
REQUIRE(clf.getNotes()[2] == "Pairs not used in train: 2");
REQUIRE(clf.getNotes()[3] == "Number of models: 22");
REQUIRE(clf.getNumberOfStates() == 5346);
REQUIRE(clf.getNumberOfNodes() == 360);
REQUIRE(clf.getNumberOfEdges() == 828);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 9 of 9 with IWSS");
REQUIRE(clf.getNotes()[1] == "Number of models: 36");
REQUIRE(clf.getNumberOfStates() == 8748);
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(0.72093));
}
TEST_CASE("Feature_select FCBF", "[XBA2DE]") {
TEST_CASE("Feature_select FCBF", "[XBA2DE]")
{
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::XBA2DE();
clf.setHyperparameters({{"select_features", "FCBF"}, {"threshold", 1e-7}});
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7} });
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 290);
REQUIRE(clf.getNumberOfEdges() == 667);
@@ -66,37 +68,39 @@ TEST_CASE("Feature_select FCBF", "[XBA2DE]") {
REQUIRE(clf.getNotes()[2] == "Number of models: 29");
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(0.744186));
}
TEST_CASE("Test used features in train note and score", "[XBA2DE]") {
TEST_CASE("Test used features in train note and score", "[XBA2DE]")
{
auto raw = RawDatasets("diabetes", true);
auto clf = bayesnet::XBA2DE();
clf.setHyperparameters({
{"order", "asc"},
{"convergence", true},
{"select_features", "CFS"},
});
});
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 144);
REQUIRE(clf.getNumberOfEdges() == 320);
REQUIRE(clf.getNumberOfStates() == 5504);
REQUIRE(clf.getNumberOfNodes() == 189);
REQUIRE(clf.getNumberOfEdges() == 420);
REQUIRE(clf.getNumberOfStates() == 7224);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
REQUIRE(clf.getNotes()[1] == "Number of models: 16");
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 7 of 8 with CFS");
REQUIRE(clf.getNotes()[1] == "Number of models: 21");
auto score = clf.score(raw.Xv, raw.yv);
auto scoret = clf.score(raw.Xt, raw.yt);
REQUIRE(score == Catch::Approx(0.850260437f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.850260437f).epsilon(raw.epsilon));
REQUIRE(score == Catch::Approx(0.854166687f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.854166687f).epsilon(raw.epsilon));
}
TEST_CASE("Order asc, desc & random", "[XBA2DE]") {
TEST_CASE("Order asc, desc & random", "[XBA2DE]")
{
auto raw = RawDatasets("glass", true);
std::map<std::string, double> scores{{"asc", 0.827103}, {"desc", 0.808411}, {"rand", 0.827103}};
for (const std::string &order : {"asc", "desc", "rand"}) {
std::map<std::string, double> scores{ {"asc", 0.827103}, {"desc", 0.808411}, {"rand", 0.827103} };
for (const std::string& order : { "asc", "desc", "rand" }) {
auto clf = bayesnet::XBA2DE();
clf.setHyperparameters({
{"order", order},
{"bisection", false},
{"maxTolerance", 1},
{"convergence", true},
});
});
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto score = clf.score(raw.Xv, raw.yv);
auto scoret = clf.score(raw.Xt, raw.yt);
@@ -105,7 +109,8 @@ TEST_CASE("Order asc, desc & random", "[XBA2DE]") {
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
}
}
TEST_CASE("Oddities", "[XBA2DE]") {
TEST_CASE("Oddities", "[XBA2DE]")
{
auto clf = bayesnet::XBA2DE();
auto raw = RawDatasets("iris", true);
auto bad_hyper = nlohmann::json{
@@ -114,28 +119,28 @@ TEST_CASE("Oddities", "[XBA2DE]") {
{{"maxTolerance", 0}},
{{"maxTolerance", 7}},
};
for (const auto &hyper : bad_hyper.items()) {
for (const auto& hyper : bad_hyper.items()) {
INFO("XBA2DE hyper: " << hyper.value().dump());
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
}
REQUIRE_THROWS_AS(clf.setHyperparameters({{"maxTolerance", 0}}), std::invalid_argument);
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0} }), std::invalid_argument);
auto bad_hyper_fit = nlohmann::json{
{{"select_features", "IWSS"}, {"threshold", -0.01}},
{{"select_features", "IWSS"}, {"threshold", 0.51}},
{{"select_features", "FCBF"}, {"threshold", 1e-8}},
{{"select_features", "FCBF"}, {"threshold", 1.01}},
};
for (const auto &hyper : bad_hyper_fit.items()) {
for (const auto& hyper : bad_hyper_fit.items()) {
INFO("XBA2DE hyper: " << hyper.value().dump());
clf.setHyperparameters(hyper.value());
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
std::invalid_argument);
std::invalid_argument);
}
auto bad_hyper_fit2 = nlohmann::json{
{{"alpha_block", true}, {"block_update", true}},
{{"bisection", false}, {"block_update", true}},
};
for (const auto &hyper : bad_hyper_fit2.items()) {
for (const auto& hyper : bad_hyper_fit2.items()) {
INFO("XBA2DE hyper: " << hyper.value().dump());
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
}
@@ -146,12 +151,13 @@ TEST_CASE("Oddities", "[XBA2DE]") {
raw.features.pop_back();
raw.features.pop_back();
raw.features.pop_back();
clf.setHyperparameters({{"select_features", "CFS"}, {"alpha_block", false}, {"block_update", false}});
clf.setHyperparameters({ {"select_features", "CFS"}, {"alpha_block", false}, {"block_update", false} });
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNotes().size() == 1);
REQUIRE(clf.getNotes()[0] == "No features selected in initialization");
}
TEST_CASE("Bisection Best", "[XBA2DE]") {
TEST_CASE("Bisection Best", "[XBA2DE]")
{
auto clf = bayesnet::XBA2DE();
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
clf.setHyperparameters({
@@ -159,7 +165,7 @@ TEST_CASE("Bisection Best", "[XBA2DE]") {
{"maxTolerance", 3},
{"convergence", true},
{"convergence_best", false},
});
});
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 330);
REQUIRE(clf.getNumberOfEdges() == 836);
@@ -173,7 +179,8 @@ TEST_CASE("Bisection Best", "[XBA2DE]") {
REQUIRE(score == Catch::Approx(0.975).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.975).epsilon(raw.epsilon));
}
TEST_CASE("Bisection Best vs Last", "[XBA2DE]") {
TEST_CASE("Bisection Best vs Last", "[XBA2DE]")
{
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
auto clf = bayesnet::XBA2DE();
auto hyperparameters = nlohmann::json{
@@ -193,7 +200,8 @@ TEST_CASE("Bisection Best vs Last", "[XBA2DE]") {
auto score_last = clf.score(raw.X_test, raw.y_test);
REQUIRE(score_last == Catch::Approx(0.99).epsilon(raw.epsilon));
}
TEST_CASE("Block Update", "[XBA2DE]") {
TEST_CASE("Block Update", "[XBA2DE]")
{
auto clf = bayesnet::XBA2DE();
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
clf.setHyperparameters({
@@ -201,7 +209,7 @@ TEST_CASE("Block Update", "[XBA2DE]") {
{"block_update", true},
{"maxTolerance", 3},
{"convergence", true},
});
});
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 120);
REQUIRE(clf.getNumberOfEdges() == 304);
@@ -221,13 +229,14 @@ TEST_CASE("Block Update", "[XBA2DE]") {
/*}*/
/*std::cout << "Score " << score << std::endl;*/
}
TEST_CASE("Alphablock", "[XBA2DE]") {
TEST_CASE("Alphablock", "[XBA2DE]")
{
auto clf_alpha = bayesnet::XBA2DE();
auto clf_no_alpha = bayesnet::XBA2DE();
auto raw = RawDatasets("diabetes", true);
clf_alpha.setHyperparameters({
{"alpha_block", true},
});
});
clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
clf_no_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
auto score_alpha = clf_alpha.score(raw.X_test, raw.y_test);