From a70ac3e883f221b8e04a2051d7721e6e201e737c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ricardo=20Monta=C3=B1ana=20G=C3=B3mez?= Date: Sun, 9 Mar 2025 11:21:31 +0100 Subject: [PATCH] Add namespace to Smoothing.h --- bayesnet/ensembles/BoostAODE.cc | 22 +++++++++++----------- bayesnet/network/Smoothing.h | 14 ++++++++------ 2 files changed, 19 insertions(+), 17 deletions(-) diff --git a/bayesnet/ensembles/BoostAODE.cc b/bayesnet/ensembles/BoostAODE.cc index 2de0986..a1bc4b6 100644 --- a/bayesnet/ensembles/BoostAODE.cc +++ b/bayesnet/ensembles/BoostAODE.cc @@ -37,9 +37,9 @@ namespace bayesnet { // // Logging setup // - loguru::set_thread_name("BoostAODE"); - loguru::g_stderr_verbosity = loguru::Verbosity_OFF; - loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX); + // loguru::set_thread_name("BoostAODE"); + // loguru::g_stderr_verbosity = loguru::Verbosity_OFF; + // loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX); // Algorithm based on the adaboost algorithm for classification // as explained in Ensemble methods (Zhi-Hua Zhou, 2012) @@ -57,7 +57,7 @@ namespace bayesnet { for (int i = 0; i < n_models; ++i) { significanceModels.push_back(alpha_t); } - VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, n_models); + // VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, n_models); if (finished) { return; } @@ -87,7 +87,7 @@ namespace bayesnet { ); int k = bisection ? pow(2, tolerance) : 1; int counter = 0; // The model counter of the current pack - VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size()); + // VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size()); while (counter++ < k && featureSelection.size() > 0) { auto feature = featureSelection[0]; featureSelection.erase(featureSelection.begin()); @@ -124,7 +124,7 @@ namespace bayesnet { models.push_back(std::move(model)); significanceModels.push_back(alpha_t); n_models++; - VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d featuresUsed: %zu", finished, numItemsPack, n_models, featuresUsed.size()); + // VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d featuresUsed: %zu", finished, numItemsPack, n_models, featuresUsed.size()); } if (block_update) { std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_); @@ -138,10 +138,10 @@ namespace bayesnet { improvement = accuracy - priorAccuracy; } if (improvement < convergence_threshold) { - VLOG_SCOPE_F(3, " (improvement=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy); + // VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy); tolerance = 0; // Reset the counter if the model performs better numItemsPack = 0; } @@ -153,13 +153,13 @@ namespace bayesnet { priorAccuracy = accuracy; } } - VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size()); + // VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size()); finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size(); } if (tolerance > maxTolerance) { if (numItemsPack < n_models) { notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated"); - VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models); + // VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models); for (int i = 0; i < numItemsPack; ++i) { significanceModels.pop_back(); models.pop_back(); @@ -167,7 +167,7 @@ namespace bayesnet { } } else { notes.push_back("Convergence threshold reached & 0 models eliminated"); - VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack); + // VLG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack); } } if (featuresUsed.size() != features.size()) { diff --git a/bayesnet/network/Smoothing.h b/bayesnet/network/Smoothing.h index 021f298..4efc0d2 100644 --- a/bayesnet/network/Smoothing.h +++ b/bayesnet/network/Smoothing.h @@ -6,10 +6,12 @@ #ifndef SMOOTHING_H #define SMOOTHING_H -enum class Smoothing_t { - NONE = -1, - ORIGINAL = 0, - LAPLACE, - CESTNIK -}; +namespace bayesnet { + enum class Smoothing_t { + NONE = -1, + ORIGINAL = 0, + LAPLACE, + CESTNIK + }; +} #endif // SMOOTHING_H \ No newline at end of file