Add Ensemble tests
This commit is contained in:
@@ -8,7 +8,9 @@ if(ENABLE_TESTING)
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestUtils.cc ${BayesNet_SOURCES})
|
||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc
|
||||
TestUtils.cc TestBayesEnsemble.cc ${BayesNet_SOURCES})
|
||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain )
|
||||
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
||||
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
||||
@@ -16,5 +18,7 @@ if(ENABLE_TESTING)
|
||||
add_test(NAME Metrics COMMAND TestBayesNet "[Metrics]")
|
||||
add_test(NAME FeatureSelection COMMAND TestBayesNet "[FeatureSelection]")
|
||||
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
||||
add_test(NAME Ensemble COMMAND TestBayesNet "[Ensemble]")
|
||||
add_test(NAME Models COMMAND TestBayesNet "[Models]")
|
||||
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
||||
endif(ENABLE_TESTING)
|
||||
|
104
tests/TestBayesEnsemble.cc
Normal file
104
tests/TestBayesEnsemble.cc
Normal file
@@ -0,0 +1,104 @@
|
||||
#include <type_traits>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
|
||||
TEST_CASE("Topological Order", "[Ensemble]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto order = clf.topological_order();
|
||||
REQUIRE(order.size() == 0);
|
||||
}
|
||||
TEST_CASE("Dump CPT", "[Ensemble]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto dump = clf.dump_cpt();
|
||||
REQUIRE(dump == "");
|
||||
}
|
||||
TEST_CASE("Number of States", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfStates() == 76);
|
||||
}
|
||||
TEST_CASE("Show", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
std::vector<std::string> expected = {
|
||||
"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> sepallength, sepalwidth, petalwidth, ",
|
||||
"petalwidth -> ",
|
||||
"sepallength -> ",
|
||||
"sepalwidth -> ",
|
||||
"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> ",
|
||||
"petalwidth -> sepallength, sepalwidth, petallength, ",
|
||||
"sepallength -> ",
|
||||
"sepalwidth -> ",
|
||||
"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> ",
|
||||
"petalwidth -> ",
|
||||
"sepallength -> sepalwidth, petallength, petalwidth, ",
|
||||
"sepalwidth -> ",
|
||||
"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> ",
|
||||
"petalwidth -> ",
|
||||
"sepallength -> ",
|
||||
"sepalwidth -> sepallength, petallength, petalwidth, ",
|
||||
};
|
||||
auto show = clf.show();
|
||||
REQUIRE(show.size() == expected.size());
|
||||
for (size_t i = 0; i < show.size(); i++)
|
||||
REQUIRE(show[i] == expected[i]);
|
||||
}
|
||||
TEST_CASE("Graph", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto graph = clf.graph();
|
||||
REQUIRE(graph.size() == 56);
|
||||
}
|
||||
TEST_CASE("Compute ArgMax", "[Ensemble]")
|
||||
{
|
||||
class TestEnsemble : public bayesnet::BoostAODE {
|
||||
public:
|
||||
TestEnsemble() : bayesnet::BoostAODE() {}
|
||||
torch::Tensor compute_arg_max(torch::Tensor& X) { return Ensemble::compute_arg_max(X); }
|
||||
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X) { return Ensemble::compute_arg_max(X); }
|
||||
};
|
||||
TestEnsemble clf;
|
||||
std::vector<std::vector<double>> X = {
|
||||
{0.1f, 0.2f, 0.3f},
|
||||
{0.4f, 0.9f, 0.6f},
|
||||
{0.7f, 0.8f, 0.9f},
|
||||
{0.5f, 0.2f, 0.1f},
|
||||
{0.3f, 0.7f, 0.2f},
|
||||
{0.5f, 0.5f, 0.2f}
|
||||
};
|
||||
std::vector<int> expected = { 2, 1, 2, 0, 1, 0 };
|
||||
auto argmax = clf.compute_arg_max(X);
|
||||
REQUIRE(argmax.size() == expected.size());
|
||||
REQUIRE(argmax == expected);
|
||||
auto Xt = torch::zeros({ 6, 3 }, torch::kFloat32);
|
||||
Xt[0][0] = 0.1f; Xt[0][1] = 0.2f; Xt[0][2] = 0.3f;
|
||||
Xt[1][0] = 0.4f; Xt[1][1] = 0.9f; Xt[1][2] = 0.6f;
|
||||
Xt[2][0] = 0.7f; Xt[2][1] = 0.8f; Xt[2][2] = 0.9f;
|
||||
Xt[3][0] = 0.5f; Xt[3][1] = 0.2f; Xt[3][2] = 0.1f;
|
||||
Xt[4][0] = 0.3f; Xt[4][1] = 0.7f; Xt[4][2] = 0.2f;
|
||||
Xt[5][0] = 0.5f; Xt[5][1] = 0.5f; Xt[5][2] = 0.2f;
|
||||
auto argmaxt = clf.compute_arg_max(Xt);
|
||||
REQUIRE(argmaxt.size(0) == expected.size());
|
||||
for (int i = 0; i < argmaxt.size(0); i++)
|
||||
REQUIRE(argmaxt[i].item<int>() == expected[i]);
|
||||
}
|
@@ -2,6 +2,7 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "bayesnet/classifiers/KDB.h"
|
||||
#include "bayesnet/classifiers/TAN.h"
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
@@ -87,62 +88,7 @@ TEST_CASE("Get num features & num edges", "[Models]")
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
||||
TEST_CASE("BoostAODE feature_select CFS", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "CFS"} });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("BoostAODE feature_select IWSS", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 5 of 9 with IWSS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("BoostAODE feature_select FCBF", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 5 of 9 with FCBF");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("BoostAODE test used features in train note and score", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
clf.setHyperparameters({
|
||||
{"order", "asc"},
|
||||
{"convergence", true},
|
||||
{"select_features","CFS"},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 8");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.80078).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.80078).epsilon(raw.epsilon));
|
||||
}
|
||||
|
||||
TEST_CASE("Model predict_proba", "[Models]")
|
||||
{
|
||||
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting");
|
||||
@@ -230,25 +176,7 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
delete clf;
|
||||
}
|
||||
}
|
||||
TEST_CASE("BoostAODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
||||
REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_voting[83][2] == Catch::Approx(0.552091).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_proba[83][2] == Catch::Approx(0.546017).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.dump_cpt() == "");
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
|
||||
TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
@@ -294,22 +222,21 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("BoostAODE order asc, desc & random", "[Models]")
|
||||
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<std::string, double> scores{
|
||||
{"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||
};
|
||||
for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({
|
||||
{"order", order},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("BoostAODE order: " + order);
|
||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
auto clf = bayesnet::AODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
std::string message = "Ensemble has not been fitted";
|
||||
REQUIRE_THROWS_AS(clf.predict(raw.Xv), std::logic_error);
|
||||
REQUIRE_THROWS_AS(clf.predict_proba(raw.Xv), std::logic_error);
|
||||
REQUIRE_THROWS_AS(clf.predict(raw.Xt), std::logic_error);
|
||||
REQUIRE_THROWS_AS(clf.predict_proba(raw.Xt), std::logic_error);
|
||||
REQUIRE_THROWS_AS(clf.score(raw.Xv, raw.yv), std::logic_error);
|
||||
REQUIRE_THROWS_AS(clf.score(raw.Xt, raw.yt), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(clf.predict(raw.Xv), message);
|
||||
REQUIRE_THROWS_WITH(clf.predict_proba(raw.Xv), message);
|
||||
REQUIRE_THROWS_WITH(clf.predict(raw.Xt), message);
|
||||
REQUIRE_THROWS_WITH(clf.predict_proba(raw.Xt), message);
|
||||
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
|
||||
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
|
||||
}
|
106
tests/TestBoostAODE.cc
Normal file
106
tests/TestBoostAODE.cc
Normal file
@@ -0,0 +1,106 @@
|
||||
#include <type_traits>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
|
||||
TEST_CASE("Feature_select CFS", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "CFS"} });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 5 of 9 with IWSS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 5 of 9 with FCBF");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
clf.setHyperparameters({
|
||||
{"order", "asc"},
|
||||
{"convergence", true},
|
||||
{"select_features","CFS"},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 8");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.80078).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.80078).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
||||
REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_voting[83][2] == Catch::Approx(0.552091).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_proba[83][2] == Catch::Approx(0.546017).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.dump_cpt() == "");
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<std::string, double> scores{
|
||||
{"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||
};
|
||||
for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({
|
||||
{"order", order},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("BoostAODE order: " + order);
|
||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
TEST_CASE("Oddities", "[BoostAODE]")
|
||||
{
|
||||
|
||||
}
|
Reference in New Issue
Block a user