Update version, changelog, and Xsp2de clf name
This commit is contained in:
14
CHANGELOG.md
14
CHANGELOG.md
@@ -7,15 +7,23 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
## [1.0.7] 2025-03-16
|
||||
|
||||
|
||||
### Added
|
||||
|
||||
- Add a new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||
- Add a new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||
- Add a new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||
- A new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||
- A new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||
- A new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||
- A new model named XSPODE, an optimized for speed averaged one dependence estimator.
|
||||
- A new model named XSP2DE, an optimized for speed averaged two dependence estimator.
|
||||
- A new model named XBAODE, an optimized for speed BoostAODE model.
|
||||
- A new model named XBA2DE, an optimized for speed BoostA2DE model.
|
||||
|
||||
### Internal
|
||||
|
||||
- Optimize ComputeCPT method in the Node class.
|
||||
- Add methods getCount and getMaxCount to the CountingSemaphore class, returning the current count and the maximum count of threads respectively.
|
||||
|
||||
### Changed
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 1.0.6
|
||||
VERSION 1.0.7
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
|
@@ -4,7 +4,7 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "XSPnDE.h"
|
||||
#include "XSP2DE.h"
|
||||
#include <pthread.h> // for pthread_setname_np on linux
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
@@ -18,7 +18,7 @@ namespace bayesnet {
|
||||
// --------------------------------------
|
||||
// Constructor
|
||||
// --------------------------------------
|
||||
XSpnde::XSpnde(int spIndex1, int spIndex2)
|
||||
XSp2de::XSp2de(int spIndex1, int spIndex2)
|
||||
: superParent1_{ spIndex1 }
|
||||
, superParent2_{ spIndex2 }
|
||||
, nFeatures_{0}
|
||||
@@ -34,7 +34,7 @@ XSpnde::XSpnde(int spIndex1, int spIndex2)
|
||||
// --------------------------------------
|
||||
// setHyperparameters
|
||||
// --------------------------------------
|
||||
void XSpnde::setHyperparameters(const nlohmann::json &hyperparameters_)
|
||||
void XSp2de::setHyperparameters(const nlohmann::json &hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent1")) {
|
||||
@@ -52,7 +52,7 @@ void XSpnde::setHyperparameters(const nlohmann::json &hyperparameters_)
|
||||
// --------------------------------------
|
||||
// fitx
|
||||
// --------------------------------------
|
||||
void XSpnde::fitx(torch::Tensor & X, torch::Tensor & y,
|
||||
void XSp2de::fitx(torch::Tensor & X, torch::Tensor & y,
|
||||
torch::Tensor & weights_, const Smoothing_t smoothing)
|
||||
{
|
||||
m = X.size(1); // number of samples
|
||||
@@ -73,7 +73,7 @@ void XSpnde::fitx(torch::Tensor & X, torch::Tensor & y,
|
||||
// --------------------------------------
|
||||
// buildModel
|
||||
// --------------------------------------
|
||||
void XSpnde::buildModel(const torch::Tensor &weights)
|
||||
void XSp2de::buildModel(const torch::Tensor &weights)
|
||||
{
|
||||
nFeatures_ = n;
|
||||
|
||||
@@ -122,7 +122,7 @@ void XSpnde::buildModel(const torch::Tensor &weights)
|
||||
// --------------------------------------
|
||||
// trainModel
|
||||
// --------------------------------------
|
||||
void XSpnde::trainModel(const torch::Tensor &weights,
|
||||
void XSp2de::trainModel(const torch::Tensor &weights,
|
||||
const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
// Accumulate raw counts
|
||||
@@ -158,7 +158,7 @@ void XSpnde::trainModel(const torch::Tensor &weights,
|
||||
// --------------------------------------
|
||||
// addSample
|
||||
// --------------------------------------
|
||||
void XSpnde::addSample(const std::vector<int> &instance, double weight)
|
||||
void XSp2de::addSample(const std::vector<int> &instance, double weight)
|
||||
{
|
||||
if (weight <= 0.0)
|
||||
return;
|
||||
@@ -205,7 +205,7 @@ void XSpnde::addSample(const std::vector<int> &instance, double weight)
|
||||
// --------------------------------------
|
||||
// computeProbabilities
|
||||
// --------------------------------------
|
||||
void XSpnde::computeProbabilities()
|
||||
void XSp2de::computeProbabilities()
|
||||
{
|
||||
double totalCount = std::accumulate(classCounts_.begin(),
|
||||
classCounts_.end(), 0.0);
|
||||
@@ -305,7 +305,7 @@ void XSpnde::computeProbabilities()
|
||||
// --------------------------------------
|
||||
// predict_proba (single instance)
|
||||
// --------------------------------------
|
||||
std::vector<double> XSpnde::predict_proba(const std::vector<int> &instance) const
|
||||
std::vector<double> XSp2de::predict_proba(const std::vector<int> &instance) const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
@@ -355,7 +355,7 @@ std::vector<double> XSpnde::predict_proba(const std::vector<int> &instance) cons
|
||||
// --------------------------------------
|
||||
// predict_proba (batch)
|
||||
// --------------------------------------
|
||||
std::vector<std::vector<double>> XSpnde::predict_proba(std::vector<std::vector<int>> &test_data)
|
||||
std::vector<std::vector<double>> XSp2de::predict_proba(std::vector<std::vector<int>> &test_data)
|
||||
{
|
||||
int test_size = test_data[0].size(); // each feature is test_data[f], size = #samples
|
||||
int sample_size = test_data.size(); // = nFeatures_
|
||||
@@ -372,7 +372,7 @@ std::vector<std::vector<double>> XSpnde::predict_proba(std::vector<std::vector<i
|
||||
int sample_size,
|
||||
std::vector<std::vector<double>> &predictions) {
|
||||
std::string threadName =
|
||||
"XSpnde-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
"XSp2de-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
@@ -404,7 +404,7 @@ std::vector<std::vector<double>> XSpnde::predict_proba(std::vector<std::vector<i
|
||||
// --------------------------------------
|
||||
// predict (single instance)
|
||||
// --------------------------------------
|
||||
int XSpnde::predict(const std::vector<int> &instance) const
|
||||
int XSp2de::predict(const std::vector<int> &instance) const
|
||||
{
|
||||
auto p = predict_proba(instance);
|
||||
return static_cast<int>(
|
||||
@@ -415,7 +415,7 @@ int XSpnde::predict(const std::vector<int> &instance) const
|
||||
// --------------------------------------
|
||||
// predict (batch of data)
|
||||
// --------------------------------------
|
||||
std::vector<int> XSpnde::predict(std::vector<std::vector<int>> &test_data)
|
||||
std::vector<int> XSp2de::predict(std::vector<std::vector<int>> &test_data)
|
||||
{
|
||||
auto probabilities = predict_proba(test_data);
|
||||
std::vector<int> predictions(probabilities.size(), 0);
|
||||
@@ -433,7 +433,7 @@ std::vector<int> XSpnde::predict(std::vector<std::vector<int>> &test_data)
|
||||
// --------------------------------------
|
||||
// predict (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
torch::Tensor XSpnde::predict(torch::Tensor &X)
|
||||
torch::Tensor XSp2de::predict(torch::Tensor &X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict(X_);
|
||||
@@ -443,7 +443,7 @@ torch::Tensor XSpnde::predict(torch::Tensor &X)
|
||||
// --------------------------------------
|
||||
// predict_proba (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
torch::Tensor XSpnde::predict_proba(torch::Tensor &X)
|
||||
torch::Tensor XSp2de::predict_proba(torch::Tensor &X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict_proba(X_);
|
||||
@@ -459,7 +459,7 @@ torch::Tensor XSpnde::predict_proba(torch::Tensor &X)
|
||||
// --------------------------------------
|
||||
// score (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
float XSpnde::score(torch::Tensor &X, torch::Tensor &y)
|
||||
float XSp2de::score(torch::Tensor &X, torch::Tensor &y)
|
||||
{
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
@@ -468,7 +468,7 @@ float XSpnde::score(torch::Tensor &X, torch::Tensor &y)
|
||||
// --------------------------------------
|
||||
// score (vector version)
|
||||
// --------------------------------------
|
||||
float XSpnde::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
|
||||
float XSp2de::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
|
||||
{
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
@@ -483,7 +483,7 @@ float XSpnde::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
|
||||
// --------------------------------------
|
||||
// Utility: normalize
|
||||
// --------------------------------------
|
||||
void XSpnde::normalize(std::vector<double> &v) const
|
||||
void XSp2de::normalize(std::vector<double> &v) const
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (auto &val : v) {
|
||||
@@ -499,10 +499,10 @@ void XSpnde::normalize(std::vector<double> &v) const
|
||||
// --------------------------------------
|
||||
// to_string
|
||||
// --------------------------------------
|
||||
std::string XSpnde::to_string() const
|
||||
std::string XSp2de::to_string() const
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "----- XSpnde Model -----\n"
|
||||
oss << "----- XSp2de Model -----\n"
|
||||
<< "nFeatures_ = " << nFeatures_ << "\n"
|
||||
<< "superParent1_ = " << superParent1_ << "\n"
|
||||
<< "superParent2_ = " << superParent2_ << "\n"
|
||||
@@ -533,30 +533,30 @@ std::string XSpnde::to_string() const
|
||||
// --------------------------------------
|
||||
// Some introspection about the graph
|
||||
// --------------------------------------
|
||||
int XSpnde::getNumberOfNodes() const
|
||||
int XSp2de::getNumberOfNodes() const
|
||||
{
|
||||
// nFeatures + 1 class node
|
||||
return nFeatures_ + 1;
|
||||
}
|
||||
|
||||
int XSpnde::getClassNumStates() const
|
||||
int XSp2de::getClassNumStates() const
|
||||
{
|
||||
return statesClass_;
|
||||
}
|
||||
|
||||
int XSpnde::getNFeatures() const
|
||||
int XSp2de::getNFeatures() const
|
||||
{
|
||||
return nFeatures_;
|
||||
}
|
||||
|
||||
int XSpnde::getNumberOfStates() const
|
||||
int XSp2de::getNumberOfStates() const
|
||||
{
|
||||
// purely an example. Possibly you want to sum up actual
|
||||
// cardinalities or something else.
|
||||
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
|
||||
}
|
||||
|
||||
int XSpnde::getNumberOfEdges() const
|
||||
int XSp2de::getNumberOfEdges() const
|
||||
{
|
||||
// In an SPNDE with n=2, for each feature we have edges from class, sp1, sp2.
|
||||
// So that’s 3*(nFeatures_) edges, minus the ones for the superparents themselves,
|
@@ -4,8 +4,8 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XSPNDE_H
|
||||
#define XSPNDE_H
|
||||
#ifndef XSP2DE_H
|
||||
#define XSP2DE_H
|
||||
|
||||
#include "Classifier.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
@@ -14,9 +14,9 @@
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
class XSpnde : public Classifier {
|
||||
class XSp2de : public Classifier {
|
||||
public:
|
||||
XSpnde(int spIndex1, int spIndex2);
|
||||
XSp2de(int spIndex1, int spIndex2);
|
||||
void setHyperparameters(const nlohmann::json &hyperparameters_) override;
|
||||
void fitx(torch::Tensor &X, torch::Tensor &y, torch::Tensor &weights_, const Smoothing_t smoothing);
|
||||
std::vector<double> predict_proba(const std::vector<int> &instance) const;
|
||||
@@ -72,4 +72,4 @@ class XSpnde : public Classifier {
|
||||
};
|
||||
|
||||
} // namespace bayesnet
|
||||
#endif // XSPNDE_H
|
||||
#endif // XSP2DE_H
|
@@ -7,7 +7,7 @@
|
||||
#include <folding.hpp>
|
||||
#include <limits.h>
|
||||
#include "XBA2DE.h"
|
||||
#include "bayesnet/classifiers/XSPnDE.h"
|
||||
#include "bayesnet/classifiers/XSP2DE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -23,7 +23,7 @@ std::vector<int> XBA2DE::initializeModels(const Smoothing_t smoothing) {
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSpnde>(featuresSelected[i], featuresSelected[j]);
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSp2de>(featuresSelected[i], featuresSelected[j]);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
add_model(std::move(model), 1.0);
|
||||
}
|
||||
@@ -94,7 +94,7 @@ void XBA2DE::trainModel(const torch::Tensor &weights, const Smoothing_t smoothin
|
||||
auto feature_pair = pairSelection[0];
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<XSpnde>(feature_pair.first, feature_pair.second);
|
||||
model = std::make_unique<XSp2de>(feature_pair.first, feature_pair.second);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
|
@@ -20,7 +20,7 @@
|
||||
#include "bayesnet/ensembles/AODELd.h"
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
|
||||
const std::string ACTUAL_VERSION = "1.0.6";
|
||||
const std::string ACTUAL_VERSION = "1.0.7";
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{
|
||||
|
@@ -7,7 +7,7 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "bayesnet/classifiers/XSPnDE.h" // <-- your new 2-superparent classifier
|
||||
#include "bayesnet/classifiers/XSP2DE.h" // <-- your new 2-superparent classifier
|
||||
#include "TestUtils.h" // for RawDatasets, etc.
|
||||
|
||||
// Helper function to handle each (sp1, sp2) pair in tests
|
||||
@@ -19,7 +19,7 @@ static void check_spnde_pair(
|
||||
bool fitTensor)
|
||||
{
|
||||
// Create our classifier
|
||||
bayesnet::XSpnde clf(sp1, sp2);
|
||||
bayesnet::XSp2de clf(sp1, sp2);
|
||||
|
||||
// Option A: fit with vector-based data
|
||||
if (fitVector) {
|
||||
@@ -48,7 +48,7 @@ static void check_spnde_pair(
|
||||
// ------------------------------------------------------------
|
||||
// 1) Fit vector test
|
||||
// ------------------------------------------------------------
|
||||
TEST_CASE("fit vector test (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("fit vector test (XSP2DE)", "[XSP2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
std::vector<std::pair<int,int>> parentPairs = {
|
||||
@@ -62,7 +62,7 @@ TEST_CASE("fit vector test (XSPNDE)", "[XSPNDE]") {
|
||||
// ------------------------------------------------------------
|
||||
// 2) Fit dataset test
|
||||
// ------------------------------------------------------------
|
||||
TEST_CASE("fit dataset test (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("fit dataset test (XSP2DE)", "[XSP2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
// Again test multiple pairs:
|
||||
@@ -77,7 +77,7 @@ TEST_CASE("fit dataset test (XSPNDE)", "[XSPNDE]") {
|
||||
// ------------------------------------------------------------
|
||||
// 3) Tensors dataset predict & predict_proba
|
||||
// ------------------------------------------------------------
|
||||
TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("tensors dataset predict & predict_proba (XSP2DE)", "[XSP2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
std::vector<std::pair<int,int>> parentPairs = {
|
||||
@@ -85,7 +85,7 @@ TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
};
|
||||
|
||||
for (auto &p : parentPairs) {
|
||||
bayesnet::XSpnde clf(p.first, p.second);
|
||||
bayesnet::XSp2de clf(p.first, p.second);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
@@ -100,26 +100,26 @@ TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
auto proba = clf.predict_proba(X_reduced);
|
||||
}
|
||||
}
|
||||
TEST_CASE("Check hyperparameters", "[XSPNDE]")
|
||||
TEST_CASE("Check hyperparameters", "[XSP2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
auto clf = bayesnet::XSp2de(0, 1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto clf2 = bayesnet::XSpnde(2, 3);
|
||||
auto clf2 = bayesnet::XSp2de(2, 3);
|
||||
clf2.setHyperparameters({{"parent1", 0}, {"parent2", 1}});
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.to_string() == clf2.to_string());
|
||||
}
|
||||
TEST_CASE("Check different smoothing", "[XSPNDE]")
|
||||
TEST_CASE("Check different smoothing", "[XSP2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
auto clf = bayesnet::XSp2de(0, 1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::ORIGINAL);
|
||||
auto clf2 = bayesnet::XSpnde(0, 1);
|
||||
auto clf2 = bayesnet::XSp2de(0, 1);
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto clf3 = bayesnet::XSpnde(0, 1);
|
||||
auto clf3 = bayesnet::XSp2de(0, 1);
|
||||
clf3.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::NONE);
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto score2 = clf2.score(raw.X_test, raw.y_test);
|
||||
@@ -128,10 +128,10 @@ TEST_CASE("Check different smoothing", "[XSPNDE]")
|
||||
REQUIRE(score2 == Catch::Approx(0.7333333).epsilon(raw.epsilon));
|
||||
REQUIRE(score3 == Catch::Approx(0.966667).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Check rest", "[XSPNDE]")
|
||||
TEST_CASE("Check rest", "[XSP2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
auto clf = bayesnet::XSp2de(0, 1);
|
||||
REQUIRE_THROWS_AS(clf.predict_proba(std::vector<int>({1,2,3,4})), std::logic_error);
|
||||
clf.fitx(raw.Xt, raw.yt, raw.weights, bayesnet::Smoothing_t::ORIGINAL);
|
||||
REQUIRE(clf.getNFeatures() == 4);
|
||||
|
Reference in New Issue
Block a user