Update version, changelog, and Xsp2de clf name
This commit is contained in:
@@ -20,7 +20,7 @@
|
||||
#include "bayesnet/ensembles/AODELd.h"
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
|
||||
const std::string ACTUAL_VERSION = "1.0.6";
|
||||
const std::string ACTUAL_VERSION = "1.0.7";
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{
|
||||
|
@@ -7,7 +7,7 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "bayesnet/classifiers/XSPnDE.h" // <-- your new 2-superparent classifier
|
||||
#include "bayesnet/classifiers/XSP2DE.h" // <-- your new 2-superparent classifier
|
||||
#include "TestUtils.h" // for RawDatasets, etc.
|
||||
|
||||
// Helper function to handle each (sp1, sp2) pair in tests
|
||||
@@ -19,7 +19,7 @@ static void check_spnde_pair(
|
||||
bool fitTensor)
|
||||
{
|
||||
// Create our classifier
|
||||
bayesnet::XSpnde clf(sp1, sp2);
|
||||
bayesnet::XSp2de clf(sp1, sp2);
|
||||
|
||||
// Option A: fit with vector-based data
|
||||
if (fitVector) {
|
||||
@@ -48,7 +48,7 @@ static void check_spnde_pair(
|
||||
// ------------------------------------------------------------
|
||||
// 1) Fit vector test
|
||||
// ------------------------------------------------------------
|
||||
TEST_CASE("fit vector test (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("fit vector test (XSP2DE)", "[XSP2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
std::vector<std::pair<int,int>> parentPairs = {
|
||||
@@ -62,7 +62,7 @@ TEST_CASE("fit vector test (XSPNDE)", "[XSPNDE]") {
|
||||
// ------------------------------------------------------------
|
||||
// 2) Fit dataset test
|
||||
// ------------------------------------------------------------
|
||||
TEST_CASE("fit dataset test (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("fit dataset test (XSP2DE)", "[XSP2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
// Again test multiple pairs:
|
||||
@@ -77,7 +77,7 @@ TEST_CASE("fit dataset test (XSPNDE)", "[XSPNDE]") {
|
||||
// ------------------------------------------------------------
|
||||
// 3) Tensors dataset predict & predict_proba
|
||||
// ------------------------------------------------------------
|
||||
TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("tensors dataset predict & predict_proba (XSP2DE)", "[XSP2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
std::vector<std::pair<int,int>> parentPairs = {
|
||||
@@ -85,7 +85,7 @@ TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
};
|
||||
|
||||
for (auto &p : parentPairs) {
|
||||
bayesnet::XSpnde clf(p.first, p.second);
|
||||
bayesnet::XSp2de clf(p.first, p.second);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
@@ -100,26 +100,26 @@ TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
auto proba = clf.predict_proba(X_reduced);
|
||||
}
|
||||
}
|
||||
TEST_CASE("Check hyperparameters", "[XSPNDE]")
|
||||
TEST_CASE("Check hyperparameters", "[XSP2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
auto clf = bayesnet::XSp2de(0, 1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto clf2 = bayesnet::XSpnde(2, 3);
|
||||
auto clf2 = bayesnet::XSp2de(2, 3);
|
||||
clf2.setHyperparameters({{"parent1", 0}, {"parent2", 1}});
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.to_string() == clf2.to_string());
|
||||
}
|
||||
TEST_CASE("Check different smoothing", "[XSPNDE]")
|
||||
TEST_CASE("Check different smoothing", "[XSP2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
auto clf = bayesnet::XSp2de(0, 1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::ORIGINAL);
|
||||
auto clf2 = bayesnet::XSpnde(0, 1);
|
||||
auto clf2 = bayesnet::XSp2de(0, 1);
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto clf3 = bayesnet::XSpnde(0, 1);
|
||||
auto clf3 = bayesnet::XSp2de(0, 1);
|
||||
clf3.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::NONE);
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto score2 = clf2.score(raw.X_test, raw.y_test);
|
||||
@@ -128,10 +128,10 @@ TEST_CASE("Check different smoothing", "[XSPNDE]")
|
||||
REQUIRE(score2 == Catch::Approx(0.7333333).epsilon(raw.epsilon));
|
||||
REQUIRE(score3 == Catch::Approx(0.966667).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Check rest", "[XSPNDE]")
|
||||
TEST_CASE("Check rest", "[XSP2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
auto clf = bayesnet::XSp2de(0, 1);
|
||||
REQUIRE_THROWS_AS(clf.predict_proba(std::vector<int>({1,2,3,4})), std::logic_error);
|
||||
clf.fitx(raw.Xt, raw.yt, raw.weights, bayesnet::Smoothing_t::ORIGINAL);
|
||||
REQUIRE(clf.getNFeatures() == 4);
|
||||
|
Reference in New Issue
Block a user