Update version, changelog, and Xsp2de clf name

This commit is contained in:
2025-03-16 18:55:24 +01:00
parent 70c7d3dd3d
commit 9ee388561f
7 changed files with 61 additions and 53 deletions

View File

@@ -4,7 +4,7 @@
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "XSPnDE.h"
#include "XSP2DE.h"
#include <pthread.h> // for pthread_setname_np on linux
#include <cassert>
#include <cmath>
@@ -18,7 +18,7 @@ namespace bayesnet {
// --------------------------------------
// Constructor
// --------------------------------------
XSpnde::XSpnde(int spIndex1, int spIndex2)
XSp2de::XSp2de(int spIndex1, int spIndex2)
: superParent1_{ spIndex1 }
, superParent2_{ spIndex2 }
, nFeatures_{0}
@@ -34,7 +34,7 @@ XSpnde::XSpnde(int spIndex1, int spIndex2)
// --------------------------------------
// setHyperparameters
// --------------------------------------
void XSpnde::setHyperparameters(const nlohmann::json &hyperparameters_)
void XSp2de::setHyperparameters(const nlohmann::json &hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("parent1")) {
@@ -52,7 +52,7 @@ void XSpnde::setHyperparameters(const nlohmann::json &hyperparameters_)
// --------------------------------------
// fitx
// --------------------------------------
void XSpnde::fitx(torch::Tensor & X, torch::Tensor & y,
void XSp2de::fitx(torch::Tensor & X, torch::Tensor & y,
torch::Tensor & weights_, const Smoothing_t smoothing)
{
m = X.size(1); // number of samples
@@ -73,7 +73,7 @@ void XSpnde::fitx(torch::Tensor & X, torch::Tensor & y,
// --------------------------------------
// buildModel
// --------------------------------------
void XSpnde::buildModel(const torch::Tensor &weights)
void XSp2de::buildModel(const torch::Tensor &weights)
{
nFeatures_ = n;
@@ -122,7 +122,7 @@ void XSpnde::buildModel(const torch::Tensor &weights)
// --------------------------------------
// trainModel
// --------------------------------------
void XSpnde::trainModel(const torch::Tensor &weights,
void XSp2de::trainModel(const torch::Tensor &weights,
const bayesnet::Smoothing_t smoothing)
{
// Accumulate raw counts
@@ -158,7 +158,7 @@ void XSpnde::trainModel(const torch::Tensor &weights,
// --------------------------------------
// addSample
// --------------------------------------
void XSpnde::addSample(const std::vector<int> &instance, double weight)
void XSp2de::addSample(const std::vector<int> &instance, double weight)
{
if (weight <= 0.0)
return;
@@ -205,7 +205,7 @@ void XSpnde::addSample(const std::vector<int> &instance, double weight)
// --------------------------------------
// computeProbabilities
// --------------------------------------
void XSpnde::computeProbabilities()
void XSp2de::computeProbabilities()
{
double totalCount = std::accumulate(classCounts_.begin(),
classCounts_.end(), 0.0);
@@ -305,7 +305,7 @@ void XSpnde::computeProbabilities()
// --------------------------------------
// predict_proba (single instance)
// --------------------------------------
std::vector<double> XSpnde::predict_proba(const std::vector<int> &instance) const
std::vector<double> XSp2de::predict_proba(const std::vector<int> &instance) const
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
@@ -355,7 +355,7 @@ std::vector<double> XSpnde::predict_proba(const std::vector<int> &instance) cons
// --------------------------------------
// predict_proba (batch)
// --------------------------------------
std::vector<std::vector<double>> XSpnde::predict_proba(std::vector<std::vector<int>> &test_data)
std::vector<std::vector<double>> XSp2de::predict_proba(std::vector<std::vector<int>> &test_data)
{
int test_size = test_data[0].size(); // each feature is test_data[f], size = #samples
int sample_size = test_data.size(); // = nFeatures_
@@ -372,7 +372,7 @@ std::vector<std::vector<double>> XSpnde::predict_proba(std::vector<std::vector<i
int sample_size,
std::vector<std::vector<double>> &predictions) {
std::string threadName =
"XSpnde-" + std::to_string(begin) + "-" + std::to_string(chunk);
"XSp2de-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
@@ -404,7 +404,7 @@ std::vector<std::vector<double>> XSpnde::predict_proba(std::vector<std::vector<i
// --------------------------------------
// predict (single instance)
// --------------------------------------
int XSpnde::predict(const std::vector<int> &instance) const
int XSp2de::predict(const std::vector<int> &instance) const
{
auto p = predict_proba(instance);
return static_cast<int>(
@@ -415,7 +415,7 @@ int XSpnde::predict(const std::vector<int> &instance) const
// --------------------------------------
// predict (batch of data)
// --------------------------------------
std::vector<int> XSpnde::predict(std::vector<std::vector<int>> &test_data)
std::vector<int> XSp2de::predict(std::vector<std::vector<int>> &test_data)
{
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
@@ -433,7 +433,7 @@ std::vector<int> XSpnde::predict(std::vector<std::vector<int>> &test_data)
// --------------------------------------
// predict (torch::Tensor version)
// --------------------------------------
torch::Tensor XSpnde::predict(torch::Tensor &X)
torch::Tensor XSp2de::predict(torch::Tensor &X)
{
auto X_ = TensorUtils::to_matrix(X);
auto result_v = predict(X_);
@@ -443,7 +443,7 @@ torch::Tensor XSpnde::predict(torch::Tensor &X)
// --------------------------------------
// predict_proba (torch::Tensor version)
// --------------------------------------
torch::Tensor XSpnde::predict_proba(torch::Tensor &X)
torch::Tensor XSp2de::predict_proba(torch::Tensor &X)
{
auto X_ = TensorUtils::to_matrix(X);
auto result_v = predict_proba(X_);
@@ -459,7 +459,7 @@ torch::Tensor XSpnde::predict_proba(torch::Tensor &X)
// --------------------------------------
// score (torch::Tensor version)
// --------------------------------------
float XSpnde::score(torch::Tensor &X, torch::Tensor &y)
float XSp2de::score(torch::Tensor &X, torch::Tensor &y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
@@ -468,7 +468,7 @@ float XSpnde::score(torch::Tensor &X, torch::Tensor &y)
// --------------------------------------
// score (vector version)
// --------------------------------------
float XSpnde::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
float XSp2de::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
{
auto y_pred = predict(X);
int correct = 0;
@@ -483,7 +483,7 @@ float XSpnde::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
// --------------------------------------
// Utility: normalize
// --------------------------------------
void XSpnde::normalize(std::vector<double> &v) const
void XSp2de::normalize(std::vector<double> &v) const
{
double sum = 0.0;
for (auto &val : v) {
@@ -499,10 +499,10 @@ void XSpnde::normalize(std::vector<double> &v) const
// --------------------------------------
// to_string
// --------------------------------------
std::string XSpnde::to_string() const
std::string XSp2de::to_string() const
{
std::ostringstream oss;
oss << "----- XSpnde Model -----\n"
oss << "----- XSp2de Model -----\n"
<< "nFeatures_ = " << nFeatures_ << "\n"
<< "superParent1_ = " << superParent1_ << "\n"
<< "superParent2_ = " << superParent2_ << "\n"
@@ -533,30 +533,30 @@ std::string XSpnde::to_string() const
// --------------------------------------
// Some introspection about the graph
// --------------------------------------
int XSpnde::getNumberOfNodes() const
int XSp2de::getNumberOfNodes() const
{
// nFeatures + 1 class node
return nFeatures_ + 1;
}
int XSpnde::getClassNumStates() const
int XSp2de::getClassNumStates() const
{
return statesClass_;
}
int XSpnde::getNFeatures() const
int XSp2de::getNFeatures() const
{
return nFeatures_;
}
int XSpnde::getNumberOfStates() const
int XSp2de::getNumberOfStates() const
{
// purely an example. Possibly you want to sum up actual
// cardinalities or something else.
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
}
int XSpnde::getNumberOfEdges() const
int XSp2de::getNumberOfEdges() const
{
// In an SPNDE with n=2, for each feature we have edges from class, sp1, sp2.
// So thats 3*(nFeatures_) edges, minus the ones for the superparents themselves,

View File

@@ -4,8 +4,8 @@
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef XSPNDE_H
#define XSPNDE_H
#ifndef XSP2DE_H
#define XSP2DE_H
#include "Classifier.h"
#include "bayesnet/utils/CountingSemaphore.h"
@@ -14,9 +14,9 @@
namespace bayesnet {
class XSpnde : public Classifier {
class XSp2de : public Classifier {
public:
XSpnde(int spIndex1, int spIndex2);
XSp2de(int spIndex1, int spIndex2);
void setHyperparameters(const nlohmann::json &hyperparameters_) override;
void fitx(torch::Tensor &X, torch::Tensor &y, torch::Tensor &weights_, const Smoothing_t smoothing);
std::vector<double> predict_proba(const std::vector<int> &instance) const;
@@ -72,4 +72,4 @@ class XSpnde : public Classifier {
};
} // namespace bayesnet
#endif // XSPNDE_H
#endif // XSP2DE_H