Refactor hyperparameters classifier management
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
#include <sstream>
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "Classifier.h"
|
||||
|
||||
@@ -27,10 +28,11 @@ namespace bayesnet {
|
||||
dataset = torch::cat({ dataset, yresized }, 0);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
std::cout << "X dimensions: " << dataset.sizes() << "\n";
|
||||
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
|
||||
exit(1);
|
||||
std::stringstream oss;
|
||||
oss << "* Error in X and y dimensions *\n";
|
||||
oss << "X dimensions: " << dataset.sizes() << "\n";
|
||||
oss << "y dimensions: " << ytmp.sizes();
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
void Classifier::trainModel(const torch::Tensor& weights)
|
||||
@@ -179,6 +181,8 @@ namespace bayesnet {
|
||||
}
|
||||
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
//For classifiers that don't have hyperparameters
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
}
|
@@ -6,14 +6,18 @@ namespace bayesnet {
|
||||
validHyperparameters = { "k", "theta" };
|
||||
|
||||
}
|
||||
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
void KDB::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("k")) {
|
||||
k = hyperparameters["k"];
|
||||
hyperparameters.erase("k");
|
||||
}
|
||||
if (hyperparameters.contains("theta")) {
|
||||
theta = hyperparameters["theta"];
|
||||
hyperparameters.erase("theta");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void KDB::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
|
@@ -14,7 +14,7 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
|
@@ -13,9 +13,7 @@ namespace bayesnet {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void AODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
|
@@ -94,9 +94,7 @@ namespace bayesnet {
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||
{
|
||||
|
@@ -20,7 +20,7 @@ namespace bayesnet {
|
||||
BoostAODE(bool predict_voting = false);
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
|
Reference in New Issue
Block a user