Continue Test Network

This commit is contained in:
2023-10-09 11:25:30 +02:00
parent e3ae073333
commit 8fdad78a8c
6 changed files with 324 additions and 82 deletions

View File

@@ -19,4 +19,4 @@ else()
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}")
endif()
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(testx ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(testx ArffFiles mdlp BayesNet "${TORCH_LIBRARIES}")

View File

@@ -1,11 +1,16 @@
#include "Folding.h"
#include <torch/torch.h>
#include "map"
#include "Datasets.h"
#include <map>
#include <iostream>
#include <sstream>
#include "Datasets.h"
#include "Network.h"
#include "ArffFiles.h"
#include "CPPFImdlp.h"
using namespace std;
using namespace platform;
using namespace torch;
string counts(vector<int> y, vector<int> indices)
{
@@ -21,45 +26,187 @@ string counts(vector<int> y, vector<int> indices)
oss << endl;
return oss.str();
}
class Paths {
public:
static string datasets()
{
return "datasets/";
}
};
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
bool file_exists(const string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last, bool discretize_dataset)
{
auto handler = ArffFiles();
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff", class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
Tensor Xd;
auto states = map<string, vector<int>>();
if (discretize_dataset) {
auto Xr = discretizeDataset(X, y);
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
}
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
} else {
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) {
Xd.index_put_({ i, "..." }, torch::tensor(X[i]));
}
}
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
}
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
{
auto handler = ArffFiles();
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
return { Xd, y, features, className, states };
}
class RawDatasets {
public:
RawDatasets(const string& file_name, bool discretize)
{
// Xt can be either discretized or not
tie(Xt, yt, featurest, classNamet, statest) = loadDataset(file_name, true, discretize);
// Xv is always discretized
tie(Xv, yv, featuresv, classNamev, statesv) = loadFile(file_name);
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
dataset = torch::cat({ Xt, yresized }, 0);
nSamples = dataset.size(1);
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
weightsv = vector<double>(nSamples, 1.0 / nSamples);
classNumStates = discretize ? statest.at(classNamet).size() : 0;
}
torch::Tensor Xt, yt, dataset, weights;
vector<vector<int>> Xv;
vector<double> weightsv;
vector<int> yv;
vector<string> featurest, featuresv;
map<string, vector<int>> statest, statesv;
string classNamet, classNamev;
int nSamples, classNumStates;
double epsilon = 1e-5;
};
int main()
{
map<string, string> balance = {
{"iris", "33,33% (50) / 33,33% (50) / 33,33% (50)"},
{"diabetes", "34,90% (268) / 65,10% (500)"},
{"ecoli", "42,56% (143) / 22,92% (77) / 0,60% (2) / 0,60% (2) / 10,42% (35) / 5,95% (20) / 1,49% (5) / 15,48% (52)"},
{"glass", "32,71% (70) / 7,94% (17) / 4,21% (9) / 35,51% (76) / 13,55% (29) / 6,07% (13)"}
};
for (const auto& file_name : { "iris", "glass", "ecoli", "diabetes" }) {
auto dt = Datasets(true, "Arff");
auto [X, y] = dt.getVectors(file_name);
//auto fold = KFold(5, 150);
auto fold = StratifiedKFold(5, y, -1);
cout << "***********************************************************************************************" << endl;
cout << "Dataset: " << file_name << endl;
cout << "Nº Samples: " << dt.getNSamples(file_name) << endl;
cout << "Class states: " << dt.getNClasses(file_name) << endl;
cout << "Balance: " << balance.at(file_name) << endl;
for (int i = 0; i < 5; ++i) {
cout << "Fold: " << i << endl;
auto [train, test] = fold.getFold(i);
cout << "Train: ";
cout << "(" << train.size() << "): ";
// for (auto j = 0; j < static_cast<int>(train.size()); j++)
// cout << train[j] << ", ";
cout << endl;
cout << "Train Statistics : " << counts(y, train);
cout << "-------------------------------------------------------------------------------" << endl;
cout << "Test: ";
cout << "(" << test.size() << "): ";
// for (auto j = 0; j < static_cast<int>(test.size()); j++)
// cout << test[j] << ", ";
cout << endl;
cout << "Test Statistics: " << counts(y, test);
cout << "==============================================================================" << endl;
}
cout << "***********************************************************************************************" << endl;
// map<string, string> balance = {
// {"iris", "33,33% (50) / 33,33% (50) / 33,33% (50)"},
// {"diabetes", "34,90% (268) / 65,10% (500)"},
// {"ecoli", "42,56% (143) / 22,92% (77) / 0,60% (2) / 0,60% (2) / 10,42% (35) / 5,95% (20) / 1,49% (5) / 15,48% (52)"},
// {"glass", "32,71% (70) / 7,94% (17) / 4,21% (9) / 35,51% (76) / 13,55% (29) / 6,07% (13)"}
// };
// for (const auto& file_name : { "iris", "glass", "ecoli", "diabetes" }) {
// auto dt = Datasets(true, "Arff");
// auto [X, y] = dt.getVectors(file_name);
// //auto fold = KFold(5, 150);
// auto fold = StratifiedKFold(5, y, -1);
// cout << "***********************************************************************************************" << endl;
// cout << "Dataset: " << file_name << endl;
// cout << "Nº Samples: " << dt.getNSamples(file_name) << endl;
// cout << "Class states: " << dt.getNClasses(file_name) << endl;
// cout << "Balance: " << balance.at(file_name) << endl;
// for (int i = 0; i < 5; ++i) {
// cout << "Fold: " << i << endl;
// auto [train, test] = fold.getFold(i);
// cout << "Train: ";
// cout << "(" << train.size() << "): ";
// // for (auto j = 0; j < static_cast<int>(train.size()); j++)
// // cout << train[j] << ", ";
// cout << endl;
// cout << "Train Statistics : " << counts(y, train);
// cout << "-------------------------------------------------------------------------------" << endl;
// cout << "Test: ";
// cout << "(" << test.size() << "): ";
// // for (auto j = 0; j < static_cast<int>(test.size()); j++)
// // cout << test[j] << ", ";
// cout << endl;
// cout << "Test Statistics: " << counts(y, test);
// cout << "==============================================================================" << endl;
// }
// cout << "***********************************************************************************************" << endl;
// }
const string file_name = "iris";
auto net = bayesnet::Network();
auto dt = Datasets(true, "Arff");
auto raw = RawDatasets("iris", true);
auto [X, y] = dt.getVectors(file_name);
cout << "Dataset dims " << raw.dataset.sizes() << endl;
cout << "weights dims " << raw.weights.sizes() << endl;
cout << "States dims " << raw.statest.size() << endl;
cout << "features: ";
for (const auto& feature : raw.featurest) {
cout << feature << ", ";
net.addNode(feature);
}
net.addNode(raw.classNamet);
cout << endl;
net.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
}