First approach to bisection
This commit is contained in:
@@ -24,24 +24,19 @@
|
||||
|
||||
13. $numModelsInPack \leftarrow 0$
|
||||
|
||||
14.
|
||||
|
||||
15. // main loop
|
||||
|
||||
16. While (!finished)
|
||||
|
||||
1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
|
||||
|
||||
2. if $(bisection) \; k \leftarrow 2^{tolerance} \;$ else
|
||||
$k \leftarrow 1$
|
||||
2. $k \leftarrow 2^{tolerance}$
|
||||
|
||||
3. if ($k tolerance == 0$) $W_B \leftarrow W$;
|
||||
3. if ($tolerance == 0$)
|
||||
$numItemsPack \leftarrow0$
|
||||
|
||||
4. $P \leftarrow Head(\pi,k)$ // first k features in order
|
||||
|
||||
5. $spodes \leftarrow \emptyset$
|
||||
|
||||
6. $i \leftarrow 0$
|
||||
|
||||
7. While ($i < size(P)$)
|
||||
@@ -58,32 +53,29 @@
|
||||
|
||||
6. $\hat{y}[] \leftarrow spode.Predict(D[W])$
|
||||
|
||||
7. $e \leftarrow error(\hat{y}[], y[])$
|
||||
7. $\epsilon \leftarrow error(\hat{y}[], y[])$
|
||||
|
||||
8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-e}{e} \right )$
|
||||
8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
|
||||
|
||||
9. if ($\alpha > 0.5$)
|
||||
9. if ($\epsilon > 0.5$)
|
||||
|
||||
1. $finished \leftarrow True$
|
||||
|
||||
2. break
|
||||
|
||||
10. $spodes.add( (spode,\alpha_t) )$
|
||||
10. $AODE.add( (spode,\alpha_t) )$
|
||||
|
||||
11. $W \leftarrow UpdateWeights(D[W],\alpha,y[],\hat{y}[])$
|
||||
|
||||
8. $AODE.add( spodes )$
|
||||
8. if ($convergence$ $\And$ $! finished$)
|
||||
|
||||
9. if ($convergence \And ! finished$)
|
||||
|
||||
1. $\hat{y}[] \leftarrow Predict(D,spodes)$
|
||||
1. $\hat{y}[] \leftarrow AODE.Predict(D[W])$
|
||||
|
||||
2. $e \leftarrow error(\hat{y}[], y[])$
|
||||
|
||||
3. if $(e > (error+\delta))$ // result doesn't improve
|
||||
|
||||
1. if
|
||||
$(tolerance == maxTolerance) \;\; finished\leftarrow True$
|
||||
1. if $(tolerance == maxTolerance)\; finished\leftarrow True$
|
||||
|
||||
2. else $tolerance \leftarrow tolerance+1$
|
||||
|
||||
@@ -93,7 +85,7 @@
|
||||
|
||||
2. $error \leftarrow min(error,e)$
|
||||
|
||||
10. If $(Vars == \emptyset) \; finished \leftarrow True$
|
||||
9. if $(Vars == \emptyset) \; finished \leftarrow True$
|
||||
|
||||
17. if ($tolerance == maxTolerance$) // algorithm finished because of
|
||||
lack of convergence
|
||||
|
Reference in New Issue
Block a user