First approach to bisection

This commit is contained in:
2024-03-19 14:13:40 +01:00
parent 422129802a
commit 882d905a28
4 changed files with 67 additions and 58 deletions

View File

@@ -22,8 +22,8 @@ namespace bayesnet {
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = {
"maxModels", "order", "convergence", "threshold",
"select_features", "tolerance", "predict_voting"
"maxModels", "bisection", "order", "convergence", "threshold",
"select_features", "maxTolerance", "predict_voting"
};
}
@@ -75,13 +75,19 @@ namespace bayesnet {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("bisection")) {
bisection = hyperparameters["bisection"];
hyperparameters.erase("bisection");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("tolerance")) {
tolerance = hyperparameters["tolerance"];
hyperparameters.erase("tolerance");
if (hyperparameters.contains("maxTolerance")) {
maxTolerance = hyperparameters["maxTolerance"];
if (maxTolerance < 1 || maxTolerance > 4)
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
hyperparameters.erase("maxTolerance");
}
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
@@ -167,17 +173,17 @@ namespace bayesnet {
fitted = true;
double alpha_t = 0;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool exitCondition = false;
bool finished = false;
std::unordered_set<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
auto ypred = predict(X_train);
std::tie(weights_, alpha_t, exitCondition) = update_weights(y_train, ypred, weights_);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
}
if (exitCondition) {
if (finished) {
return;
}
}
@@ -186,13 +192,14 @@ namespace bayesnet {
double priorAccuracy = 0.0;
double delta = 1.0;
double convergence_threshold = 1e-4;
int worse_model_count = 0; // number of times the accuracy is lower than the convergence_threshold
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
// Step 0: Set the finish condition
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
bool ascending = order_algorithm == Orders.ASC;
std::mt19937 g{ 173 };
while (!exitCondition) {
torch::Tensor weights_backup;
while (!finished) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
if (order_algorithm == Orders.RAND) {
@@ -203,25 +210,33 @@ namespace bayesnet {
{ return find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
end(featureSelection)
);
if (featureSelection.empty()) {
break;
int k = pow(2, tolerance);
if (tolerance == 0) {
}
auto feature = featureSelection[0];
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
torch::Tensor ypred;
ypred = model->predict(X_train);
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, exitCondition) = update_weights(y_train, ypred, weights_);
if (exitCondition) {
break;
int i = 0;
while (i < k && featureSelection.size() > 0) {
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
torch::Tensor ypred;
ypred = model->predict(X_train);
// Step 3.1: Compute the classifier amout of say
weights_backup = weights_.clone();
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
if (finished) {
finished = true;
weights_ = weights_backup.clone();
break;
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
featuresUsed.insert(feature);
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
featuresUsed.insert(feature);
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
if (convergence) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
@@ -231,19 +246,23 @@ namespace bayesnet {
delta = accuracy - priorAccuracy;
}
if (delta < convergence_threshold) {
worse_model_count++;
tolerance++;
} else {
worse_model_count = 0; // Reset the counter if the model performs better
tolerance = 0; // Reset the counter if the model performs better
}
priorAccuracy = accuracy;
// Keep the best accuracy until now as the prior accuracy
priorAccuracy = std::max(accuracy, priorAccuracy);
}
exitCondition = worse_model_count > tolerance;
finished = finished || tolerance == maxTolerance || featuresUsed.size() == features.size();
}
if (worse_model_count > tolerance) {
notes.push_back("Convergence threshold reached & last model eliminated");
significanceModels.pop_back();
models.pop_back();
n_models--;
if (tolerance == maxTolerance) {
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
weights_ = weights_backup;
for (int i = 0; i < numItemsPack; ++i) {
significanceModels.pop_back();
models.pop_back();
n_models--;
}
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));

View File

@@ -20,7 +20,7 @@ namespace bayesnet {
torch::Tensor X_train, y_train, X_test, y_test;
// Hyperparameters
bool bisection = false; // if true, use bisection stratety to add k models at once to the ensemble
int tolerance = 0;
int maxTolerance = 1;
std::string order_algorithm; // order to process the KBest features asc, desc, rand
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection