libmdlp (#31)
Add mdlp as library in lib/ Fix tests to reach 99.1% of coverage Reviewed-on: #31
This commit is contained in:
@@ -4,10 +4,9 @@ include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
${FImdlp_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
file(GLOB_RECURSE Sources "*.cc")
|
||||
|
||||
add_library(BayesNet ${Sources})
|
||||
target_link_libraries(BayesNet ${FImdlp} "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(BayesNet fimdlp "${TORCH_LIBRARIES}")
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <torch/torch.h>
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include <CPPFImdlp.h>
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "Classifier.h"
|
||||
|
||||
|
@@ -59,6 +59,9 @@ namespace bayesnet {
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
if (featuresUsed.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
|
@@ -209,7 +209,7 @@ namespace bayesnet {
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
double numStates = static_cast<double>(node.second->getNumStates());
|
||||
double smoothing_factor = 0.0;
|
||||
double smoothing_factor;
|
||||
switch (smoothing) {
|
||||
case Smoothing_t::ORIGINAL:
|
||||
smoothing_factor = 1.0 / n_samples;
|
||||
@@ -221,7 +221,7 @@ namespace bayesnet {
|
||||
smoothing_factor = 1 / numStates;
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Smoothing method not recognized " + std::to_string(static_cast<int>(smoothing)));
|
||||
smoothing_factor = 0.0; // No smoothing
|
||||
}
|
||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||
semaphore.release();
|
||||
@@ -234,16 +234,6 @@ namespace bayesnet {
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
// std::fstream file;
|
||||
// file.open("cpt.txt", std::fstream::out | std::fstream::app);
|
||||
// file << std::string(80, '*') << std::endl;
|
||||
// for (const auto& item : graph("Test")) {
|
||||
// file << item << std::endl;
|
||||
// }
|
||||
// file << std::string(80, '-') << std::endl;
|
||||
// file << dump_cpt() << std::endl;
|
||||
// file << std::string(80, '=') << std::endl;
|
||||
// file.close();
|
||||
fitted = true;
|
||||
}
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
|
@@ -53,14 +53,14 @@ namespace bayesnet {
|
||||
}
|
||||
}
|
||||
|
||||
void insertElement(std::list<int>& variables, int variable)
|
||||
void MST::insertElement(std::list<int>& variables, int variable)
|
||||
{
|
||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||
variables.push_front(variable);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
std::vector<std::pair<int, int>> MST::reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
{
|
||||
// Create the edges of a DAG from the MST
|
||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||
|
@@ -14,6 +14,8 @@ namespace bayesnet {
|
||||
public:
|
||||
MST() = default;
|
||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
void insertElement(std::list<int>& variables, int variable);
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||
private:
|
||||
torch::Tensor weights;
|
||||
|
Reference in New Issue
Block a user