Refactor TestUtils to allow partial and shuffle dataset load

This commit is contained in:
2024-04-30 02:11:14 +02:00
parent ae469b8146
commit 793b2d3cd5
4 changed files with 139 additions and 103 deletions

View File

@@ -13,37 +13,60 @@
#include <tuple>
#include <ArffFiles.h>
#include <CPPFImdlp.h>
#include <folding.hpp>
bool file_exists(const std::string& name);
std::pair<vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<string> features);
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
std::tuple<vector<vector<int>>, std::vector<int>, std::vector<string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::string& name);
std::tuple<torch::Tensor, torch::Tensor, std::vector<string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, bool discretize_dataset);
class RawDatasets {
public:
RawDatasets(const std::string& file_name, bool discretize)
{
// Xt can be either discretized or not
tie(Xt, yt, featurest, classNamet, statest) = loadDataset(file_name, true, discretize);
// Xv is always discretized
tie(Xv, yv, featuresv, classNamev, statesv) = loadFile(file_name);
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
dataset = torch::cat({ Xt, yresized }, 0);
nSamples = dataset.size(1);
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
weightsv = std::vector<double>(nSamples, 1.0 / nSamples);
classNumStates = discretize ? statest.at(classNamet).size() : 0;
}
RawDatasets(const std::string& file_name, bool discretize_, int num_lines_ = 0, bool shuffle_ = false);
torch::Tensor Xt, yt, dataset, weights;
torch::Tensor X_train, y_train, X_test, y_test;
std::vector<vector<int>> Xv;
std::vector<double> weightsv;
std::vector<int> yv;
std::vector<string> featurest, featuresv;
map<std::string, std::vector<int>> statest, statesv;
std::string classNamet, classNamev;
std::vector<double> weightsv;
std::vector<string> features;
std::string className;
map<std::string, std::vector<int>> states;
int nSamples, classNumStates;
double epsilon = 1e-5;
bool discretize;
int num_lines = 0;
bool shuffle = false;
private:
std::string to_string()
{
std::string features_ = "";
for (auto& f : features) {
features_ += f + " ";
}
std::string states_ = "";
for (auto& s : states) {
states_ += s.first + " ";
for (auto& v : s.second) {
states_ += std::to_string(v) + " ";
}
states_ += "\n";
}
return "Xt dimensions: " + std::to_string(Xt.size(0)) + " " + std::to_string(Xt.size(1)) + "\n"
"Xv dimensions: " + std::to_string(Xv.size()) + " " + std::to_string(Xv[0].size()) + "\n"
+ "yt dimensions: " + std::to_string(yt.size(0)) + "\n"
+ "yv dimensions: " + std::to_string(yv.size()) + "\n"
+ "X_train dimensions: " + std::to_string(X_train.size(0)) + " " + std::to_string(X_train.size(1)) + "\n"
+ "X_test dimensions: " + std::to_string(X_test.size(0)) + " " + std::to_string(X_test.size(1)) + "\n"
+ "y_train dimensions: " + std::to_string(y_train.size(0)) + "\n"
+ "y_test dimensions: " + std::to_string(y_test.size(0)) + "\n"
+ "features: " + std::to_string(features.size()) + "\n"
+ features_ + "\n"
+ "className: " + className + "\n"
+ "states: " + std::to_string(states.size()) + "\n"
+ "nSamples: " + std::to_string(nSamples) + "\n"
+ "classNumStates: " + std::to_string(classNumStates) + "\n"
+ "states: " + states_ + "\n";
}
map<std::string, int> discretizeDataset(std::vector<mdlp::samples_t>& X);
void loadDataset(const std::string& name);
};
#endif //TEST_UTILS_H