Begin with parameter estimation

This commit is contained in:
2023-06-30 21:24:12 +02:00
parent 0a31aa2ff1
commit 71d730d228
8 changed files with 236 additions and 87 deletions

22
main.cc
View File

@@ -11,10 +11,15 @@ using namespace std;
vector<mdlp::labels_t> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t>Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
Xd.push_back(fimdlp.transform(X[i]));
mdlp::labels_t& xd = fimdlp.transform(X[i]);
cout << "X[" << i << "]: ";
auto mm = minmax_element(xd.begin(), xd.end());
cout << *mm.first << " " << *mm.second << endl;
Xd.push_back(xd);
}
return Xd;
}
@@ -33,7 +38,7 @@ int main()
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd = discretize(X, y);;
vector<mdlp::labels_t> Xd = discretize(X, y);
// Build Network
auto network = bayesnet::Network();
network.fit(Xd, y, features, className);
@@ -53,6 +58,19 @@ int main()
cout << "Root: " << network.getRoot()->getName() << endl;
network.setRoot(className);
cout << "Now Root should be class: " << network.getRoot()->getName() << endl;
cout << "CPDs:" << endl;
auto nodes = network.getNodes();
auto classNode = nodes[className];
for (auto it = nodes.begin(); it != nodes.end(); it++) {
cout << "* Name: " << it->first << " " << it->second->getName() << " -> " << it->second->getNumStates() << endl;
cout << "Parents: ";
for (auto parent : it->second->getParents()) {
cout << parent->getName() << " -> " << parent->getNumStates() << ", ";
}
cout << endl;
auto cpd = it->second->getCPT();
cout << cpd << endl;
}
cout << "PyTorch version: " << TORCH_VERSION << endl;
return 0;
}