Begin with parameter estimation
This commit is contained in:
207
Network.cc
207
Network.cc
@@ -1,7 +1,7 @@
|
||||
#include "Network.h"
|
||||
namespace bayesnet {
|
||||
Network::Network() : laplaceSmoothing(1), root(nullptr) {}
|
||||
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr) {}
|
||||
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className("") {}
|
||||
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className("") {}
|
||||
Network::~Network()
|
||||
{
|
||||
for (auto& pair : nodes) {
|
||||
@@ -10,6 +10,9 @@ namespace bayesnet {
|
||||
}
|
||||
void Network::addNode(string name, int numStates)
|
||||
{
|
||||
if (nodes.find(name) != nodes.end()) {
|
||||
throw invalid_argument("Node " + name + " already exists");
|
||||
}
|
||||
nodes[name] = new Node(name, numStates);
|
||||
if (root == nullptr) {
|
||||
root = nodes[name];
|
||||
@@ -32,7 +35,6 @@ namespace bayesnet {
|
||||
{
|
||||
visited.insert(nodeId);
|
||||
recStack.insert(nodeId);
|
||||
|
||||
for (Node* child : nodes[nodeId]->getChildren()) {
|
||||
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
|
||||
return true;
|
||||
@@ -55,13 +57,11 @@ namespace bayesnet {
|
||||
nodes[parent]->addChild(nodes[child]);
|
||||
nodes[child]->addParent(nodes[parent]);
|
||||
// temporarily add edge
|
||||
|
||||
unordered_set<string> visited;
|
||||
unordered_set<string> recStack;
|
||||
|
||||
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
|
||||
{
|
||||
// remove edge
|
||||
// remove problematic edge
|
||||
nodes[parent]->removeChild(nodes[child]);
|
||||
nodes[child]->removeParent(nodes[parent]);
|
||||
throw invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||
@@ -72,71 +72,162 @@ namespace bayesnet {
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::buildNetwork(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
|
||||
void Network::buildNetwork()
|
||||
{
|
||||
// Add features as nodes to the network
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
addNode(featureNames[i], *max_element(dataset[i].begin(), dataset[i].end()) + 1);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
addNode(features[i], *max_element(dataset[features[i]].begin(), dataset[features[i]].end()) + 1);
|
||||
}
|
||||
// Add class as node to the network
|
||||
addNode(className, *max_element(labels.begin(), labels.end()) + 1);
|
||||
addNode(className, *max_element(dataset[className].begin(), dataset[className].end()) + 1);
|
||||
// Add edges from class to features => naive Bayes
|
||||
for (auto feature : featureNames) {
|
||||
for (auto feature : features) {
|
||||
addEdge(className, feature);
|
||||
}
|
||||
addEdge("petalwidth", "petallength");
|
||||
}
|
||||
void Network::fit(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
|
||||
{
|
||||
buildNetwork(dataset, labels, featureNames, className);
|
||||
//estimateParameters(dataset);
|
||||
|
||||
// auto jointCounts = [](const vector<vector<int>>& data, const vector<int>& indices, int numStates) {
|
||||
// int size = indices.size();
|
||||
// vector<int64_t> sizes(size, numStates);
|
||||
// torch::Tensor counts = torch::zeros(sizes, torch::kLong);
|
||||
|
||||
// for (const auto& row : data) {
|
||||
// int idx = 0;
|
||||
// for (int i = 0; i < size; ++i) {
|
||||
// idx = idx * numStates + row[indices[i]];
|
||||
// }
|
||||
// counts.view({ -1 }).add_(idx, 1);
|
||||
// }
|
||||
|
||||
// return counts;
|
||||
// };
|
||||
|
||||
// auto marginalCounts = [](const torch::Tensor& jointCounts) {
|
||||
// return jointCounts.sum(-1);
|
||||
// };
|
||||
|
||||
// for (auto& pair : nodes) {
|
||||
// Node* node = pair.second;
|
||||
|
||||
// vector<int> indices;
|
||||
// for (const auto& parent : node->getParents()) {
|
||||
// indices.push_back(nodes[parent->getName()]->getId());
|
||||
// }
|
||||
// indices.push_back(node->getId());
|
||||
|
||||
// for (auto& child : node->getChildren()) {
|
||||
// torch::Tensor counts = jointCounts(dataset, indices, node->getNumStates()) + laplaceSmoothing;
|
||||
// torch::Tensor parentCounts = marginalCounts(counts);
|
||||
// parentCounts = parentCounts.unsqueeze(-1);
|
||||
|
||||
// torch::Tensor cpt = counts.to(torch::kDouble) / parentCounts.to(torch::kDouble);
|
||||
// setCPD(node->getCPDKey(child), cpt);
|
||||
// }
|
||||
// }
|
||||
features = featureNames;
|
||||
this->className = className;
|
||||
// Build dataset
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
this->dataset[featureNames[i]] = dataset[i];
|
||||
}
|
||||
this->dataset[className] = labels;
|
||||
buildNetwork();
|
||||
estimateParameters();
|
||||
}
|
||||
|
||||
torch::Tensor& Network::getCPD(const string& key)
|
||||
// void Network::estimateParameters()
|
||||
// {
|
||||
// auto dimensions = vector<int64_t>();
|
||||
// for (auto [name, node] : nodes) {
|
||||
// // Get dimensions of the CPT
|
||||
// dimensions.clear();
|
||||
// dimensions.push_back(node->getNumStates());
|
||||
// for (auto father : node->getParents()) {
|
||||
// dimensions.push_back(father->getNumStates());
|
||||
// }
|
||||
// auto length = dimensions.size();
|
||||
// // Create a tensor of zeros with the dimensions of the CPT
|
||||
// torch::Tensor cpt = torch::zeros(dimensions, torch::kFloat);
|
||||
// // Fill table with counts
|
||||
// for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
|
||||
// torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
// coordinates.push_back(torch::tensor(dataset[name][n_sample]));
|
||||
// for (auto father : node->getParents()) {
|
||||
// coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
|
||||
// }
|
||||
// // Increment the count of the corresponding coordinate
|
||||
// cpt.index_put_({ coordinates }, cpt.index({ coordinates }) + 1);
|
||||
// }
|
||||
// // store thre resulting cpt in the node
|
||||
// node->setCPT(cpt);
|
||||
// }
|
||||
// }
|
||||
|
||||
// void Network::estimateParameters()
|
||||
// {
|
||||
// // Lambda function to compute joint counts of states
|
||||
// auto jointCounts = [this](const vector<string>& nodeNames) {
|
||||
// int size = nodeNames.size();
|
||||
// std::vector<int64_t> sizes(size);
|
||||
|
||||
// for (int i = 0; i < size; ++i) {
|
||||
// sizes[i] = this->nodes[nodeNames[i]]->getNumStates();
|
||||
// }
|
||||
|
||||
// torch::Tensor counts = torch::zeros(sizes, torch::kLong);
|
||||
|
||||
// int dataSize = this->dataset[nodeNames[0]].size();
|
||||
|
||||
// for (int dataIdx = 0; dataIdx < dataSize; ++dataIdx) {
|
||||
// std::vector<torch::Tensor> idx(size);
|
||||
// for (int i = 0; i < size; ++i) {
|
||||
// idx[i] = torch::tensor(this->dataset[nodeNames[i]][dataIdx], torch::kLong);
|
||||
// }
|
||||
// torch::Tensor indices = torch::stack(idx);
|
||||
// counts.index_put_({ indices }, counts.index({ indices }) + 1);
|
||||
// }
|
||||
|
||||
// return counts;
|
||||
// };
|
||||
|
||||
// // Lambda function to compute marginal counts of states
|
||||
// auto marginalCounts = [](const torch::Tensor& jointCounts) {
|
||||
// return jointCounts.sum(-1);
|
||||
// };
|
||||
|
||||
// for (auto& pair : nodes) {
|
||||
// Node* node = pair.second;
|
||||
|
||||
// // Create a list of names of the node and its parents
|
||||
// std::vector<string> nodeNames;
|
||||
// nodeNames.push_back(node->getName());
|
||||
// for (Node* parent : node->getParents()) {
|
||||
// nodeNames.push_back(parent->getName());
|
||||
// }
|
||||
|
||||
// // Compute counts and normalize to get probabilities
|
||||
// torch::Tensor counts = jointCounts(nodeNames) + laplaceSmoothing;
|
||||
// torch::Tensor parentCounts = marginalCounts(counts);
|
||||
// parentCounts = parentCounts.unsqueeze(-1);
|
||||
|
||||
// // The CPT is represented as a tensor and stored in the Node
|
||||
// node->setCPT((counts.to(torch::kDouble) / parentCounts.to(torch::kDouble)));
|
||||
// }
|
||||
// }
|
||||
void Network::estimateParameters()
|
||||
{
|
||||
return cpds[key];
|
||||
// Lambda function to compute joint counts of states
|
||||
auto jointCounts = [this](const vector<string>& nodeNames) {
|
||||
int size = nodeNames.size();
|
||||
std::vector<int64_t> sizes(size);
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
sizes[i] = this->nodes[nodeNames[i]]->getNumStates();
|
||||
}
|
||||
|
||||
torch::Tensor counts = torch::zeros(sizes, torch::kLong);
|
||||
|
||||
int dataSize = this->dataset[nodeNames[0]].size();
|
||||
torch::List<c10::optional<torch::Tensor>> indices;
|
||||
for (int dataIdx = 0; dataIdx < dataSize; ++dataIdx) {
|
||||
indices.clear();
|
||||
for (int i = 0; i < size; ++i) {
|
||||
indices.push_back(torch::tensor(this->dataset[nodeNames[i]][dataIdx], torch::kLong));
|
||||
}
|
||||
//torch::Tensor indices = torch::stack(idx);
|
||||
counts.index_put_({ indices }, counts.index({ indices }) + 1);
|
||||
}
|
||||
|
||||
return counts;
|
||||
};
|
||||
|
||||
// Lambda function to compute marginal counts of states
|
||||
auto marginalCounts = [](const torch::Tensor& jointCounts) {
|
||||
return jointCounts.sum(-1);
|
||||
};
|
||||
|
||||
for (auto& pair : nodes) {
|
||||
Node* node = pair.second;
|
||||
|
||||
// Create a list of names of the node and its parents
|
||||
std::vector<string> nodeNames;
|
||||
nodeNames.push_back(node->getName());
|
||||
for (Node* parent : node->getParents()) {
|
||||
nodeNames.push_back(parent->getName());
|
||||
}
|
||||
|
||||
// Compute counts and normalize to get probabilities
|
||||
torch::Tensor counts = jointCounts(nodeNames) + laplaceSmoothing;
|
||||
torch::Tensor parentCounts = marginalCounts(counts);
|
||||
parentCounts = parentCounts.unsqueeze(-1);
|
||||
|
||||
// The CPT is represented as a tensor and stored in the Node
|
||||
node->setCPT((counts.to(torch::kDouble) / parentCounts.to(torch::kDouble)));
|
||||
}
|
||||
}
|
||||
|
||||
void Network::setCPD(const string& key, const torch::Tensor& cpt)
|
||||
{
|
||||
cpds[key] = cpt;
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user