Add json lib and json result generation

This commit is contained in:
2023-07-26 17:49:03 +02:00
parent 49a49a9dcd
commit 6f7fb290b0
11 changed files with 325 additions and 325 deletions

124
src/Platform/main.cc Normal file
View File

@@ -0,0 +1,124 @@
#include <iostream>
#include <string>
#include <torch/torch.h>
#include <thread>
#include <argparse/argparse.hpp>
#include "ArffFiles.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "platformUtils.h"
#include "Experiment.h"
#include "Folding.h"
using namespace std;
int main(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
for (auto dataset : datasets) {
valid_datasets.push_back(dataset.first);
}
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}")
.action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, discretize_dataset, stratified;
int n_folds, seed;
string model_name, file_name, path, complete_file_name;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
n_folds = program.get<int>("folds");
seed = program.get<int>("seed");
complete_file_name = path + file_name + ".arff";
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto [X, y, features, className, states] = loadDataset(path, file_name, class_last, discretize_dataset);
Fold* fold;
if (stratified)
fold = new StratifiedKFold(n_folds, y, seed);
else
fold = new KFold(n_folds, y.numel(), seed);
auto experiment = platform::Experiment();
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("cpp");
experiment.setStratified(stratified).setNFolds(n_folds).addRandomSeed(seed).setScoreName("accuracy");
platform::Timer timer;
timer.start();
auto result = platform::cross_validation(fold, model_name, X, y, features, className, states);
result.setDataset(file_name);
experiment.addResult(result);
experiment.setDuration(timer.getDuration());
experiment.save(path);
experiment.show();
return 0;
}