Fix metrics error in BoostAODE Convergence
Update algorithm
This commit is contained in:
@@ -1,3 +1,17 @@
|
||||
# Algorithm
|
||||
|
||||
- // notation
|
||||
|
||||
- $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
|
||||
|
||||
- $m$ instances.
|
||||
|
||||
- $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
|
||||
|
||||
- $W$ a weights vector. $W_0$ are the initial weights.
|
||||
|
||||
- $D[W]$ dataset with weights $W$ for the instances.
|
||||
|
||||
1. // initialization
|
||||
|
||||
2. $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
|
||||
@@ -8,35 +22,38 @@
|
||||
|
||||
5. $\delta \leftarrow 10^{-4}$
|
||||
|
||||
6. $convergence \leftarrow True$
|
||||
6. $convergence \leftarrow True$ // hyperparameter
|
||||
|
||||
7. $maxTolerancia \leftarrow 3$
|
||||
7. $maxTolerancia \leftarrow 3$ // hyperparameter
|
||||
|
||||
8. $bisection \leftarrow False$
|
||||
8. $bisection \leftarrow False$ // hyperparameter
|
||||
|
||||
9. $error \leftarrow \inf$
|
||||
9. $finished \leftarrow False$
|
||||
|
||||
10. $finished \leftarrow False$
|
||||
10. $AODE \leftarrow \emptyset$ // the ensemble
|
||||
|
||||
11. $AODE \leftarrow \emptyset$ // the ensemble
|
||||
11. $tolerance \leftarrow 0$
|
||||
|
||||
12. $tolerance \leftarrow 0$
|
||||
12. $numModelsInPack \leftarrow 0$
|
||||
|
||||
13. $numModelsInPack \leftarrow 0$
|
||||
13. $maxAccuracy \leftarrow -1$
|
||||
|
||||
14.
|
||||
|
||||
15. // main loop
|
||||
|
||||
16. While (!finished)
|
||||
16. While $(\lnot finished)$
|
||||
|
||||
1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
|
||||
|
||||
2. $k \leftarrow 2^{tolerance}$
|
||||
|
||||
3. if ($tolerance == 0$)
|
||||
$numItemsPack \leftarrow0$
|
||||
3. if ($tolerance == 0$) $numItemsPack \leftarrow0$
|
||||
|
||||
4. $P \leftarrow Head(\pi,k)$ // first k features in order
|
||||
|
||||
5. $spodes \leftarrow \emptyset$
|
||||
|
||||
6. $i \leftarrow 0$
|
||||
|
||||
7. While ($i < size(P)$)
|
||||
@@ -63,35 +80,39 @@
|
||||
|
||||
2. break
|
||||
|
||||
10. $AODE.add( (spode,\alpha_t) )$
|
||||
10. $spodes.add( (spode,\alpha_t) )$
|
||||
|
||||
11. $W \leftarrow UpdateWeights(D[W],\alpha,y[],\hat{y}[])$
|
||||
|
||||
8. if ($convergence$ $\And$ $! finished$)
|
||||
8. $AODE.add( spodes )$
|
||||
|
||||
9. if ($convergence \land \lnot finished$)
|
||||
|
||||
1. $\hat{y}[] \leftarrow AODE.Predict(D[W])$
|
||||
|
||||
2. $e \leftarrow error(\hat{y}[], y[])$
|
||||
2. $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
|
||||
|
||||
3. if $(e > (error+\delta))$ // result doesn't improve
|
||||
3. $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
|
||||
|
||||
1. if $(tolerance == maxTolerance)\; finished\leftarrow True$
|
||||
4. if $((accuracy - maxAccuracy) < \delta)$ // result doesn't
|
||||
improve enough
|
||||
|
||||
2. else $tolerance \leftarrow tolerance+1$
|
||||
1. $tolerance \leftarrow tolerance + 1$
|
||||
|
||||
4. else
|
||||
5. else
|
||||
|
||||
1. $tolerance \leftarrow 0$
|
||||
|
||||
2. $error \leftarrow min(error,e)$
|
||||
2. $numItemsPack \leftarrow 0$
|
||||
|
||||
9. if $(Vars == \emptyset) \; finished \leftarrow True$
|
||||
10. If
|
||||
$(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
|
||||
17. if ($tolerance == maxTolerance$) // algorithm finished because of
|
||||
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||
|
||||
17. if ($tolerance > maxTolerance$) // algorithm finished because of
|
||||
lack of convergence
|
||||
|
||||
1. $removeModels(AODE, numItemsPack)$
|
||||
|
||||
2. $W \leftarrow W_B$
|
||||
|
||||
18. Return $AODE$
|
||||
|
@@ -1,25 +1,37 @@
|
||||
\section{Algorithm}
|
||||
\begin{itemize}
|
||||
\item[] // notation
|
||||
\item $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
|
||||
\item $m$ instances.
|
||||
\item $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
|
||||
\item $W$ a weights vector. $W_0$ are the initial weights.
|
||||
\item $D[W]$ dataset with weights $W$ for the instances.
|
||||
\end{itemize}
|
||||
\bigskip
|
||||
|
||||
|
||||
\begin{enumerate}
|
||||
\item[] // initialization
|
||||
\item $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
|
||||
\item $W \leftarrow W_0$
|
||||
\item $Vars \leftarrow {\cal{X}}$
|
||||
\item $\delta \leftarrow 10^{-4}$
|
||||
\item $convergence \leftarrow True$
|
||||
\item $maxTolerancia \leftarrow 3$
|
||||
\item $bisection \leftarrow False$
|
||||
\item $error \leftarrow \inf$
|
||||
\item $convergence \leftarrow True$ // hyperparameter
|
||||
\item $maxTolerancia \leftarrow 3$ // hyperparameter
|
||||
\item $bisection \leftarrow False$ // hyperparameter
|
||||
\item $finished \leftarrow False$
|
||||
\item $AODE \leftarrow \emptyset$ \hspace*{2cm} // the ensemble
|
||||
\item $tolerance \leftarrow 0$
|
||||
\item $numModelsInPack \leftarrow 0$
|
||||
\item $maxAccuracy \leftarrow -1$
|
||||
\item[]
|
||||
\newpage
|
||||
\item[] // main loop
|
||||
\item While (!finished)
|
||||
\item While $(\lnot finished)$
|
||||
\begin{enumerate}
|
||||
\item $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
|
||||
\item if $(bisection) \; k \leftarrow 2^{tolerance} \;$ else $k \leftarrow 1$
|
||||
\item if ($k tolerance == 0$) $W_B \leftarrow W$; $numItemsPack \leftarrow0$
|
||||
\item $k \leftarrow 2^{tolerance}$
|
||||
\item if ($tolerance == 0$) $numItemsPack \leftarrow0$
|
||||
\item $P \leftarrow Head(\pi,k)$ \hspace*{2cm} // first k features in order
|
||||
\item $spodes \leftarrow \emptyset$
|
||||
\item $i \leftarrow 0$
|
||||
@@ -31,9 +43,9 @@
|
||||
\item $Vars.remove(X)$
|
||||
\item $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
|
||||
\item $\hat{y}[] \leftarrow spode.Predict(D[W])$
|
||||
\item $e \leftarrow error(\hat{y}[], y[])$
|
||||
\item $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-e}{e} \right )$
|
||||
\item if ($\alpha > 0.5$)
|
||||
\item $\epsilon \leftarrow error(\hat{y}[], y[])$
|
||||
\item $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
|
||||
\item if ($\epsilon > 0.5$)
|
||||
\begin{enumerate}
|
||||
\item $finished \leftarrow True$
|
||||
\item break
|
||||
@@ -42,28 +54,27 @@
|
||||
\item $W \leftarrow UpdateWeights(D[W],\alpha,y[],\hat{y}[])$
|
||||
\end{enumerate}
|
||||
\item $AODE.add( spodes )$
|
||||
\item if ($convergence \And ! finished$)
|
||||
\item if ($convergence \land \lnot finished$)
|
||||
\begin{enumerate}
|
||||
\item $\hat{y}[] \leftarrow Predict(D,spodes)$
|
||||
\item $e \leftarrow error(\hat{y}[], y[])$
|
||||
\item if $(e > (error+\delta))$ \hspace*{2cm} // result doesn't improve
|
||||
\item $\hat{y}[] \leftarrow AODE.Predict(D[W])$
|
||||
\item $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
|
||||
\item $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
|
||||
\item if $((accuracy - maxAccuracy) < \delta)$\hspace*{2cm} // result doesn't improve enough
|
||||
\begin{enumerate}
|
||||
\item if $(tolerance == maxTolerance) \;\; finished\leftarrow True$
|
||||
\item else $tolerance \leftarrow tolerance+1$
|
||||
\item $tolerance \leftarrow tolerance + 1$
|
||||
\end{enumerate}
|
||||
\item else
|
||||
\begin{enumerate}
|
||||
\item $tolerance \leftarrow 0$
|
||||
\item $error \leftarrow min(error,e)$
|
||||
\item $numItemsPack \leftarrow 0$
|
||||
\end{enumerate}
|
||||
\end{enumerate}
|
||||
\item If $(Vars == \emptyset) \; finished \leftarrow True$
|
||||
|
||||
\item If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
\item $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||
\end{enumerate}
|
||||
\item if ($tolerance == maxTolerance$) // algorithm finished because of lack of convergence
|
||||
\item if ($tolerance > maxTolerance$) \hspace*{1cm} // algorithm finished because of lack of convergence
|
||||
\begin{enumerate}
|
||||
\item $removeModels(AODE, numItemsPack)$
|
||||
\item $W \leftarrow W_B$
|
||||
\end{enumerate}
|
||||
\item Return $AODE$
|
||||
\end{enumerate}
|
Reference in New Issue
Block a user