Refactor library structure
This commit is contained in:
163
bayesnet/utils/BayesMetrics.cc
Normal file
163
bayesnet/utils/BayesMetrics.cc
Normal file
@@ -0,0 +1,163 @@
|
||||
#include "Mst.h"
|
||||
#include "BayesMetrics.h"
|
||||
namespace bayesnet {
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
}
|
||||
//samples is nxm std::vector used to fit the model
|
||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
|
||||
{
|
||||
for (int i = 0; i < vsamples.size(); ++i) {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = samples.size(0) - 1;
|
||||
if (k == 0) {
|
||||
k = n;
|
||||
}
|
||||
// compute scores
|
||||
scoresKBest.clear();
|
||||
featuresKBest.clear();
|
||||
auto label = samples.index({ -1, "..." });
|
||||
for (int i = 0; i < n; ++i) {
|
||||
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
|
||||
featuresKBest.push_back(i);
|
||||
}
|
||||
// sort & reduce scores and features
|
||||
if (ascending) {
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] < scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
|
||||
if (k < n) {
|
||||
for (int i = 0; i < n - k; ++i) {
|
||||
featuresKBest.erase(featuresKBest.begin());
|
||||
scoresKBest.erase(scoresKBest.begin());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] > scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
|
||||
featuresKBest.resize(k);
|
||||
scoresKBest.resize(k);
|
||||
}
|
||||
return featuresKBest;
|
||||
}
|
||||
std::vector<double> Metrics::getScoresKBest() const
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = std::vector<double>();
|
||||
auto source = std::vector<std::string>(features);
|
||||
source.push_back(className);
|
||||
auto combinations = doCombinations(source);
|
||||
// Compute class prior
|
||||
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
margin[value] = mask.sum().item<double>() / samples.size(1);
|
||||
}
|
||||
for (auto [first, second] : combinations) {
|
||||
int index_first = find(features.begin(), features.end(), first) - features.begin();
|
||||
int index_second = find(features.begin(), features.end(), second) - features.begin();
|
||||
double accumulated = 0;
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
auto first_dataset = samples.index({ index_first, mask });
|
||||
auto second_dataset = samples.index({ index_second, mask });
|
||||
auto weights_dataset = weights.index({ mask });
|
||||
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
|
||||
auto pb = margin[value].item<double>();
|
||||
accumulated += pb * mi;
|
||||
}
|
||||
result.push_back(accumulated);
|
||||
}
|
||||
long n_vars = source.size();
|
||||
auto matrix = torch::zeros({ n_vars, n_vars });
|
||||
auto indices = torch::triu_indices(n_vars, n_vars, 1);
|
||||
for (auto i = 0; i < result.size(); ++i) {
|
||||
auto x = indices[0][i];
|
||||
auto y = indices[1][i];
|
||||
matrix[x][y] = result[i];
|
||||
matrix[y][x] = result[i];
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
double totalWeight = counts.sum().item<double>();
|
||||
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
|
||||
torch::Tensor logProbs = torch::log(probs);
|
||||
torch::Tensor entropy = -probs * logProbs;
|
||||
return entropy.nansum().item<double>();
|
||||
}
|
||||
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
int numSamples = firstFeature.sizes()[0];
|
||||
torch::Tensor featureCounts = secondFeature.bincount(weights);
|
||||
std::unordered_map<int, std::unordered_map<int, double>> jointCounts;
|
||||
double totalWeight = 0;
|
||||
for (auto i = 0; i < numSamples; i++) {
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
|
||||
totalWeight += weights[i].item<float>();
|
||||
}
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
double entropyValue = 0;
|
||||
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
|
||||
double p_f = featureCounts[value].item<double>() / totalWeight;
|
||||
double entropy_f = 0;
|
||||
for (auto& [label, jointCount] : jointCounts[value]) {
|
||||
double p_l_f = jointCount / featureCounts[value].item<double>();
|
||||
if (p_l_f > 0) {
|
||||
entropy_f -= p_l_f * log(p_l_f);
|
||||
} else {
|
||||
entropy_f = 0;
|
||||
}
|
||||
}
|
||||
entropyValue += p_f * entropy_f;
|
||||
}
|
||||
return entropyValue;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
and the indices of the weights as nodes of this square matrix using
|
||||
Kruskal algorithm
|
||||
*/
|
||||
std::vector<std::pair<int, int>> Metrics::maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root)
|
||||
{
|
||||
auto mst = MST(features, weights, root);
|
||||
return mst.maximumSpanningTree();
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user