Return File Library to /lib as it is needed by Local Discretization (factorize)

This commit is contained in:
2024-04-30 20:31:14 +02:00
parent 7aeffba740
commit 618a1e539c
148 changed files with 1804 additions and 1769 deletions

View File

@@ -37,7 +37,7 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:59:18</td>
<td class="headerValue">2024-04-30 20:26:57</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -70,48 +70,48 @@
<span id="L8"><span class="lineNum"> 8</span> : #include &quot;bayesnet/utils/bayesnetUtils.h&quot;</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &quot;IWSS.h&quot;</span>
<span id="L10"><span class="lineNum"> 10</span> : namespace bayesnet {</span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 62 : IWSS::IWSS(const torch::Tensor&amp; samples, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, const int maxFeatures, const int classNumStates, const torch::Tensor&amp; weights, const double threshold) :</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 62 : FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 18 : IWSS::IWSS(const torch::Tensor&amp; samples, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, const int maxFeatures, const int classNumStates, const torch::Tensor&amp; weights, const double threshold) :</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 18 : FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)</span></span>
<span id="L13"><span class="lineNum"> 13</span> : {</span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 62 : if (threshold &lt; 0 || threshold &gt; .5) {</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 28 : throw std::invalid_argument(&quot;Threshold has to be in [0, 0.5]&quot;);</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 18 : if (threshold &lt; 0 || threshold &gt; .5) {</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 8 : throw std::invalid_argument(&quot;Threshold has to be in [0, 0.5]&quot;);</span></span>
<span id="L16"><span class="lineNum"> 16</span> : }</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 62 : }</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 34 : void IWSS::fit()</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 18 : }</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 10 : void IWSS::fit()</span></span>
<span id="L19"><span class="lineNum"> 19</span> : {</span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 34 : initialize();</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 34 : computeSuLabels();</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 34 : auto featureOrder = argsort(suLabels); // sort descending order</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 34 : auto featureOrderCopy = featureOrder;</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 10 : initialize();</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 10 : computeSuLabels();</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 10 : auto featureOrder = argsort(suLabels); // sort descending order</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 10 : auto featureOrderCopy = featureOrder;</span></span>
<span id="L24"><span class="lineNum"> 24</span> : // Add first and second features to result</span>
<span id="L25"><span class="lineNum"> 25</span> : // First with its own score</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 34 : auto first_feature = pop_first(featureOrderCopy);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 34 : selectedFeatures.push_back(first_feature);</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 34 : selectedScores.push_back(suLabels.at(first_feature));</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 10 : auto first_feature = pop_first(featureOrderCopy);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 10 : selectedFeatures.push_back(first_feature);</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 10 : selectedScores.push_back(suLabels.at(first_feature));</span></span>
<span id="L29"><span class="lineNum"> 29</span> : // Second with the score of the candidates</span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 34 : selectedFeatures.push_back(pop_first(featureOrderCopy));</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 34 : auto merit = computeMeritCFS();</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 34 : selectedScores.push_back(merit);</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 116 : for (const auto feature : featureOrderCopy) {</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 116 : selectedFeatures.push_back(feature);</span></span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 10 : selectedFeatures.push_back(pop_first(featureOrderCopy));</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 10 : auto merit = computeMeritCFS();</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 10 : selectedScores.push_back(merit);</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 34 : for (const auto feature : featureOrderCopy) {</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 34 : selectedFeatures.push_back(feature);</span></span>
<span id="L35"><span class="lineNum"> 35</span> : // Compute merit with selectedFeatures</span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 116 : auto meritNew = computeMeritCFS();</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 116 : double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 116 : if (meritNew &gt; merit || delta &lt; threshold) {</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 82 : if (meritNew &gt; merit) {</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 34 : auto meritNew = computeMeritCFS();</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 34 : double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 34 : if (meritNew &gt; merit || delta &lt; threshold) {</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 24 : if (meritNew &gt; merit) {</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaUNC tlaBgUNC"> 0 : merit = meritNew;</span></span>
<span id="L41"><span class="lineNum"> 41</span> : }</span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC tlaBgGNC"> 82 : selectedScores.push_back(meritNew);</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC tlaBgGNC"> 24 : selectedScores.push_back(meritNew);</span></span>
<span id="L43"><span class="lineNum"> 43</span> : } else {</span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 34 : selectedFeatures.pop_back();</span></span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 34 : break;</span></span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 10 : selectedFeatures.pop_back();</span></span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 10 : break;</span></span>
<span id="L46"><span class="lineNum"> 46</span> : }</span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 82 : if (selectedFeatures.size() == maxFeatures) {</span></span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 24 : if (selectedFeatures.size() == maxFeatures) {</span></span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaUNC tlaBgUNC"> 0 : break;</span></span>
<span id="L49"><span class="lineNum"> 49</span> : }</span>
<span id="L50"><span class="lineNum"> 50</span> : }</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC tlaBgGNC"> 34 : fitted = true;</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 34 : }</span></span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC tlaBgGNC"> 10 : fitted = true;</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 10 : }</span></span>
<span id="L53"><span class="lineNum"> 53</span> : }</span>
</pre>
</td>