Update tests to 99,1% of coverage
This commit is contained in:
2
.vscode/launch.json
vendored
2
.vscode/launch.json
vendored
@@ -16,7 +16,7 @@
|
|||||||
"name": "test",
|
"name": "test",
|
||||||
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
||||||
"args": [
|
"args": [
|
||||||
"Test Node computeCPT"
|
"No features selected"
|
||||||
],
|
],
|
||||||
"cwd": "${workspaceFolder}/build_Debug/tests"
|
"cwd": "${workspaceFolder}/build_Debug/tests"
|
||||||
},
|
},
|
||||||
|
@@ -7,9 +7,9 @@
|
|||||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||||

|

|
||||||
[](html/index.html)
|
[](html/index.html)
|
||||||
|
|
||||||
Bayesian Network Classifiers using libtorch from scratch
|
Bayesian Network Classifiers library
|
||||||
|
|
||||||
## Dependencies
|
## Dependencies
|
||||||
|
|
||||||
@@ -71,6 +71,8 @@ make sample fname=tests/data/glass.arff
|
|||||||
|
|
||||||
#### - AODE
|
#### - AODE
|
||||||
|
|
||||||
|
#### - A2DE
|
||||||
|
|
||||||
#### - [BoostAODE](docs/BoostAODE.md)
|
#### - [BoostAODE](docs/BoostAODE.md)
|
||||||
|
|
||||||
#### - BoostA2DE
|
#### - BoostA2DE
|
||||||
|
@@ -59,6 +59,9 @@ namespace bayesnet {
|
|||||||
std::vector<int> featuresUsed;
|
std::vector<int> featuresUsed;
|
||||||
if (selectFeatures) {
|
if (selectFeatures) {
|
||||||
featuresUsed = initializeModels(smoothing);
|
featuresUsed = initializeModels(smoothing);
|
||||||
|
if (featuresUsed.size() == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
auto ypred = predict(X_train);
|
auto ypred = predict(X_train);
|
||||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
// Update significance of the models
|
// Update significance of the models
|
||||||
|
@@ -209,7 +209,7 @@ namespace bayesnet {
|
|||||||
pthread_setname_np(threadName.c_str());
|
pthread_setname_np(threadName.c_str());
|
||||||
#endif
|
#endif
|
||||||
double numStates = static_cast<double>(node.second->getNumStates());
|
double numStates = static_cast<double>(node.second->getNumStates());
|
||||||
double smoothing_factor = 0.0;
|
double smoothing_factor;
|
||||||
switch (smoothing) {
|
switch (smoothing) {
|
||||||
case Smoothing_t::ORIGINAL:
|
case Smoothing_t::ORIGINAL:
|
||||||
smoothing_factor = 1.0 / n_samples;
|
smoothing_factor = 1.0 / n_samples;
|
||||||
@@ -221,7 +221,7 @@ namespace bayesnet {
|
|||||||
smoothing_factor = 1 / numStates;
|
smoothing_factor = 1 / numStates;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
throw std::invalid_argument("Smoothing method not recognized " + std::to_string(static_cast<int>(smoothing)));
|
smoothing_factor = 0.0; // No smoothing
|
||||||
}
|
}
|
||||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||||
semaphore.release();
|
semaphore.release();
|
||||||
@@ -234,16 +234,6 @@ namespace bayesnet {
|
|||||||
for (auto& thread : threads) {
|
for (auto& thread : threads) {
|
||||||
thread.join();
|
thread.join();
|
||||||
}
|
}
|
||||||
// std::fstream file;
|
|
||||||
// file.open("cpt.txt", std::fstream::out | std::fstream::app);
|
|
||||||
// file << std::string(80, '*') << std::endl;
|
|
||||||
// for (const auto& item : graph("Test")) {
|
|
||||||
// file << item << std::endl;
|
|
||||||
// }
|
|
||||||
// file << std::string(80, '-') << std::endl;
|
|
||||||
// file << dump_cpt() << std::endl;
|
|
||||||
// file << std::string(80, '=') << std::endl;
|
|
||||||
// file.close();
|
|
||||||
fitted = true;
|
fitted = true;
|
||||||
}
|
}
|
||||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||||
|
@@ -53,14 +53,14 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void insertElement(std::list<int>& variables, int variable)
|
void MST::insertElement(std::list<int>& variables, int variable)
|
||||||
{
|
{
|
||||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||||
variables.push_front(variable);
|
variables.push_front(variable);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
std::vector<std::pair<int, int>> MST::reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||||
{
|
{
|
||||||
// Create the edges of a DAG from the MST
|
// Create the edges of a DAG from the MST
|
||||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||||
|
@@ -14,6 +14,8 @@ namespace bayesnet {
|
|||||||
public:
|
public:
|
||||||
MST() = default;
|
MST() = default;
|
||||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||||
|
void insertElement(std::list<int>& variables, int variable);
|
||||||
|
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original);
|
||||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||||
private:
|
private:
|
||||||
torch::Tensor weights;
|
torch::Tensor weights;
|
||||||
|
@@ -10,7 +10,7 @@ if(ENABLE_TESTING)
|
|||||||
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
||||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
||||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
|
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
|
||||||
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc ${BayesNet_SOURCES})
|
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc TestMST.cc ${BayesNet_SOURCES})
|
||||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" fimdlp PRIVATE Catch2::Catch2WithMain)
|
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" fimdlp PRIVATE Catch2::Catch2WithMain)
|
||||||
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
||||||
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
||||||
@@ -24,4 +24,5 @@ if(ENABLE_TESTING)
|
|||||||
add_test(NAME Modules COMMAND TestBayesNet "[Modules]")
|
add_test(NAME Modules COMMAND TestBayesNet "[Modules]")
|
||||||
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
||||||
add_test(NAME Node COMMAND TestBayesNet "[Node]")
|
add_test(NAME Node COMMAND TestBayesNet "[Node]")
|
||||||
|
add_test(NAME MST COMMAND TestBayesNet "[MST]")
|
||||||
endif(ENABLE_TESTING)
|
endif(ENABLE_TESTING)
|
||||||
|
@@ -257,9 +257,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
|||||||
REQUIRE(node->getCPT().equal(node2->getCPT()));
|
REQUIRE(node->getCPT().equal(node2->getCPT()));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
SECTION("Test oddities")
|
SECTION("Network oddities")
|
||||||
{
|
{
|
||||||
INFO("Test oddities");
|
INFO("Network oddities");
|
||||||
buildModel(net, raw.features, raw.className);
|
buildModel(net, raw.features, raw.className);
|
||||||
// predict without fitting
|
// predict without fitting
|
||||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||||
@@ -329,6 +329,14 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
|||||||
std::string invalid_state = "Feature sepallength not found in states";
|
std::string invalid_state = "Feature sepallength not found in states";
|
||||||
REQUIRE_THROWS_AS(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), std::invalid_argument);
|
REQUIRE_THROWS_AS(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), std::invalid_argument);
|
||||||
REQUIRE_THROWS_WITH(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), invalid_state);
|
REQUIRE_THROWS_WITH(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), invalid_state);
|
||||||
|
// Try to add node or edge to a fitted network
|
||||||
|
auto net5 = bayesnet::Network();
|
||||||
|
buildModel(net5, raw.features, raw.className);
|
||||||
|
net5.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
REQUIRE_THROWS_AS(net5.addNode("A"), std::logic_error);
|
||||||
|
REQUIRE_THROWS_WITH(net5.addNode("A"), "Cannot add node to a fitted network. Initialize first.");
|
||||||
|
REQUIRE_THROWS_AS(net5.addEdge("A", "B"), std::logic_error);
|
||||||
|
REQUIRE_THROWS_WITH(net5.addEdge("A", "B"), "Cannot add edge to a fitted network. Initialize first.");
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
@@ -525,6 +533,7 @@ TEST_CASE("Test Smoothing A", "[Network]")
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST_CASE("Test Smoothing B", "[Network]")
|
TEST_CASE("Test Smoothing B", "[Network]")
|
||||||
{
|
{
|
||||||
auto net = bayesnet::Network();
|
auto net = bayesnet::Network();
|
||||||
@@ -577,4 +586,13 @@ TEST_CASE("Test Smoothing B", "[Network]")
|
|||||||
REQUIRE(cestnik_score.at(i).at(j) == Catch::Approx(cestnik_values.at(i).at(j)).margin(threshold));
|
REQUIRE(cestnik_score.at(i).at(j) == Catch::Approx(cestnik_values.at(i).at(j)).margin(threshold));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
INFO("Test Smoothing B - No smoothing");
|
||||||
|
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::NONE);
|
||||||
|
auto nosmooth_values = std::vector<std::vector<float>>({ {0.342465753, 0.65753424}, {0.0, 1.0} });
|
||||||
|
auto nosmooth_score = net.predict_proba({ {0, 1}, {1, 2}, {2, 3} });
|
||||||
|
for (auto i = 0; i < 2; ++i) {
|
||||||
|
for (auto j = 0; j < 2; ++j) {
|
||||||
|
REQUIRE(nosmooth_score.at(i).at(j) == Catch::Approx(nosmooth_values.at(i).at(j)).margin(threshold));
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
@@ -27,189 +27,192 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
|||||||
auto score = clf.score(raw.Xv, raw.yv);
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
REQUIRE(score == Catch::Approx(0.919271).epsilon(raw.epsilon));
|
REQUIRE(score == Catch::Approx(0.919271).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
// TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
TEST_CASE("Feature_select IWSS", "[BoostA2DE]")
|
||||||
// {
|
{
|
||||||
// auto raw = RawDatasets("glass", true);
|
auto raw = RawDatasets("glass", true);
|
||||||
// auto clf = bayesnet::BoostAODE();
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// REQUIRE(clf.getNumberOfNodes() == 90);
|
REQUIRE(clf.getNumberOfNodes() == 140);
|
||||||
// REQUIRE(clf.getNumberOfEdges() == 153);
|
REQUIRE(clf.getNumberOfEdges() == 294);
|
||||||
// REQUIRE(clf.getNotes().size() == 2);
|
REQUIRE(clf.getNotes().size() == 4);
|
||||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
|
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
|
||||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
REQUIRE(clf.getNotes()[1] == "Convergence threshold reached & 15 models eliminated");
|
||||||
// }
|
REQUIRE(clf.getNotes()[2] == "Pairs not used in train: 2");
|
||||||
// TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
REQUIRE(clf.getNotes()[3] == "Number of models: 14");
|
||||||
// {
|
}
|
||||||
// auto raw = RawDatasets("glass", true);
|
TEST_CASE("Feature_select FCBF", "[BoostA2DE]")
|
||||||
// auto clf = bayesnet::BoostAODE();
|
{
|
||||||
// clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
auto raw = RawDatasets("glass", true);
|
||||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// REQUIRE(clf.getNumberOfNodes() == 90);
|
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||||
// REQUIRE(clf.getNumberOfEdges() == 153);
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// REQUIRE(clf.getNotes().size() == 2);
|
REQUIRE(clf.getNumberOfNodes() == 110);
|
||||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
REQUIRE(clf.getNumberOfEdges() == 231);
|
||||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
||||||
// }
|
REQUIRE(clf.getNotes()[1] == "Convergence threshold reached & 15 models eliminated");
|
||||||
// TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
REQUIRE(clf.getNotes()[2] == "Pairs not used in train: 2");
|
||||||
// {
|
REQUIRE(clf.getNotes()[3] == "Number of models: 11");
|
||||||
// auto raw = RawDatasets("diabetes", true);
|
}
|
||||||
// auto clf = bayesnet::BoostAODE(true);
|
TEST_CASE("Test used features in train note and score", "[BoostA2DE]")
|
||||||
// clf.setHyperparameters({
|
{
|
||||||
// {"order", "asc"},
|
auto raw = RawDatasets("diabetes", true);
|
||||||
// {"convergence", true},
|
auto clf = bayesnet::BoostA2DE(true);
|
||||||
// {"select_features","CFS"},
|
clf.setHyperparameters({
|
||||||
// });
|
{"order", "asc"},
|
||||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
{"convergence", true},
|
||||||
// REQUIRE(clf.getNumberOfNodes() == 72);
|
{"select_features","CFS"},
|
||||||
// REQUIRE(clf.getNumberOfEdges() == 120);
|
});
|
||||||
// REQUIRE(clf.getNotes().size() == 2);
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
REQUIRE(clf.getNumberOfNodes() == 144);
|
||||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 8");
|
REQUIRE(clf.getNumberOfEdges() == 288);
|
||||||
// auto score = clf.score(raw.Xv, raw.yv);
|
REQUIRE(clf.getNotes().size() == 2);
|
||||||
// auto scoret = clf.score(raw.Xt, raw.yt);
|
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||||
// REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
REQUIRE(clf.getNotes()[1] == "Number of models: 16");
|
||||||
// REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
// }
|
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||||
// TEST_CASE("Voting vs proba", "[BoostAODE]")
|
REQUIRE(score == Catch::Approx(0.856771).epsilon(raw.epsilon));
|
||||||
// {
|
REQUIRE(scoret == Catch::Approx(0.856771).epsilon(raw.epsilon));
|
||||||
// auto raw = RawDatasets("iris", true);
|
}
|
||||||
// auto clf = bayesnet::BoostAODE(false);
|
TEST_CASE("Voting vs proba", "[BoostA2DE]")
|
||||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
{
|
||||||
// auto score_proba = clf.score(raw.Xv, raw.yv);
|
auto raw = RawDatasets("iris", true);
|
||||||
// auto pred_proba = clf.predict_proba(raw.Xv);
|
auto clf = bayesnet::BoostA2DE(false);
|
||||||
// clf.setHyperparameters({
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// {"predict_voting",true},
|
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||||
// });
|
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||||
// auto score_voting = clf.score(raw.Xv, raw.yv);
|
clf.setHyperparameters({
|
||||||
// auto pred_voting = clf.predict_proba(raw.Xv);
|
{"predict_voting",true},
|
||||||
// REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
});
|
||||||
// REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
|
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||||
// REQUIRE(pred_voting[83][2] == Catch::Approx(1.0).epsilon(raw.epsilon));
|
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||||
// REQUIRE(pred_proba[83][2] == Catch::Approx(0.86121525).epsilon(raw.epsilon));
|
REQUIRE(score_proba == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||||
// REQUIRE(clf.dump_cpt() == "");
|
REQUIRE(score_voting == Catch::Approx(0.946667).epsilon(raw.epsilon));
|
||||||
// REQUIRE(clf.topological_order() == std::vector<std::string>());
|
REQUIRE(pred_voting[83][2] == Catch::Approx(0.53508).epsilon(raw.epsilon));
|
||||||
// }
|
REQUIRE(pred_proba[83][2] == Catch::Approx(0.48394).epsilon(raw.epsilon));
|
||||||
// TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
REQUIRE(clf.dump_cpt() == "");
|
||||||
// {
|
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||||
// auto raw = RawDatasets("glass", true);
|
}
|
||||||
// std::map<std::string, double> scores{
|
TEST_CASE("Order asc, desc & random", "[BoostA2DE]")
|
||||||
// {"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
{
|
||||||
// };
|
auto raw = RawDatasets("glass", true);
|
||||||
// for (const std::string& order : { "asc", "desc", "rand" }) {
|
std::map<std::string, double> scores{
|
||||||
// auto clf = bayesnet::BoostAODE();
|
{"asc", 0.752336f }, { "desc", 0.813084f }, { "rand", 0.850467 }
|
||||||
// clf.setHyperparameters({
|
};
|
||||||
// {"order", order},
|
for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||||
// {"bisection", false},
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// {"maxTolerance", 1},
|
clf.setHyperparameters({
|
||||||
// {"convergence", false},
|
{"order", order},
|
||||||
// });
|
{"bisection", false},
|
||||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
{"maxTolerance", 1},
|
||||||
// auto score = clf.score(raw.Xv, raw.yv);
|
{"convergence", false},
|
||||||
// auto scoret = clf.score(raw.Xt, raw.yt);
|
});
|
||||||
// INFO("BoostAODE order: " + order);
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
// REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||||
// }
|
INFO("BoostA2DE order: " + order);
|
||||||
// }
|
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
// TEST_CASE("Oddities", "[BoostAODE]")
|
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
// {
|
}
|
||||||
// auto clf = bayesnet::BoostAODE();
|
}
|
||||||
// auto raw = RawDatasets("iris", true);
|
TEST_CASE("Oddities2", "[BoostA2DE]")
|
||||||
// auto bad_hyper = nlohmann::json{
|
{
|
||||||
// { { "order", "duck" } },
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// { { "select_features", "duck" } },
|
auto raw = RawDatasets("iris", true);
|
||||||
// { { "maxTolerance", 0 } },
|
auto bad_hyper = nlohmann::json{
|
||||||
// { { "maxTolerance", 5 } },
|
{ { "order", "duck" } },
|
||||||
// };
|
{ { "select_features", "duck" } },
|
||||||
// for (const auto& hyper : bad_hyper.items()) {
|
{ { "maxTolerance", 0 } },
|
||||||
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
{ { "maxTolerance", 5 } },
|
||||||
// REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
};
|
||||||
// }
|
for (const auto& hyper : bad_hyper.items()) {
|
||||||
// REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
INFO("BoostA2DE hyper: " + hyper.value().dump());
|
||||||
// auto bad_hyper_fit = nlohmann::json{
|
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||||
// { { "select_features","IWSS" }, { "threshold", -0.01 } },
|
}
|
||||||
// { { "select_features","IWSS" }, { "threshold", 0.51 } },
|
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||||
// { { "select_features","FCBF" }, { "threshold", 1e-8 } },
|
auto bad_hyper_fit = nlohmann::json{
|
||||||
// { { "select_features","FCBF" }, { "threshold", 1.01 } },
|
{ { "select_features","IWSS" }, { "threshold", -0.01 } },
|
||||||
// };
|
{ { "select_features","IWSS" }, { "threshold", 0.51 } },
|
||||||
// for (const auto& hyper : bad_hyper_fit.items()) {
|
{ { "select_features","FCBF" }, { "threshold", 1e-8 } },
|
||||||
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||||
// clf.setHyperparameters(hyper.value());
|
};
|
||||||
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing, std::invalid_argument);
|
for (const auto& hyper : bad_hyper_fit.items()) {
|
||||||
// }
|
INFO("BoostA2DE hyper: " + hyper.value().dump());
|
||||||
// }
|
clf.setHyperparameters(hyper.value());
|
||||||
|
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||||
// TEST_CASE("Bisection Best", "[BoostAODE]")
|
}
|
||||||
// {
|
}
|
||||||
// auto clf = bayesnet::BoostAODE();
|
TEST_CASE("No features selected", "[BoostA2DE]")
|
||||||
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
{
|
||||||
// clf.setHyperparameters({
|
// Check that the note "No features selected in initialization" is added
|
||||||
// {"bisection", true},
|
//
|
||||||
// {"maxTolerance", 3},
|
auto raw = RawDatasets("iris", true);
|
||||||
// {"convergence", true},
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// {"block_update", false},
|
clf.setHyperparameters({ {"select_features","FCBF"}, {"threshold", 1 } });
|
||||||
// {"convergence_best", false},
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// });
|
REQUIRE(clf.getNotes().size() == 1);
|
||||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
REQUIRE(clf.getNotes()[0] == "No features selected in initialization");
|
||||||
// REQUIRE(clf.getNumberOfNodes() == 210);
|
}
|
||||||
// REQUIRE(clf.getNumberOfEdges() == 378);
|
TEST_CASE("Bisection Best", "[BoostA2DE]")
|
||||||
// REQUIRE(clf.getNotes().size() == 1);
|
{
|
||||||
// REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// auto score = clf.score(raw.X_test, raw.y_test);
|
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
||||||
// auto scoret = clf.score(raw.X_test, raw.y_test);
|
clf.setHyperparameters({
|
||||||
// REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
{"bisection", true},
|
||||||
// REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
{"maxTolerance", 3},
|
||||||
// }
|
{"convergence", true},
|
||||||
// TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
{"block_update", false},
|
||||||
// {
|
{"convergence_best", false},
|
||||||
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
});
|
||||||
// auto clf = bayesnet::BoostAODE(true);
|
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// auto hyperparameters = nlohmann::json{
|
REQUIRE(clf.getNumberOfNodes() == 480);
|
||||||
// {"bisection", true},
|
REQUIRE(clf.getNumberOfEdges() == 1152);
|
||||||
// {"maxTolerance", 3},
|
REQUIRE(clf.getNotes().size() == 3);
|
||||||
// {"convergence", true},
|
REQUIRE(clf.getNotes().at(0) == "Convergence threshold reached & 15 models eliminated");
|
||||||
// {"convergence_best", true},
|
REQUIRE(clf.getNotes().at(1) == "Pairs not used in train: 83");
|
||||||
// };
|
REQUIRE(clf.getNotes().at(2) == "Number of models: 32");
|
||||||
// clf.setHyperparameters(hyperparameters);
|
auto score = clf.score(raw.X_test, raw.y_test);
|
||||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||||
// auto score_best = clf.score(raw.X_test, raw.y_test);
|
REQUIRE(score == Catch::Approx(0.966667f).epsilon(raw.epsilon));
|
||||||
// REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
|
REQUIRE(scoret == Catch::Approx(0.966667f).epsilon(raw.epsilon));
|
||||||
// // Now we will set the hyperparameter to use the last accuracy
|
}
|
||||||
// hyperparameters["convergence_best"] = false;
|
TEST_CASE("Block Update", "[BoostA2DE]")
|
||||||
// clf.setHyperparameters(hyperparameters);
|
{
|
||||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// auto score_last = clf.score(raw.X_test, raw.y_test);
|
auto raw = RawDatasets("spambase", true, 500);
|
||||||
// REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
clf.setHyperparameters({
|
||||||
// }
|
{"bisection", true},
|
||||||
|
{"block_update", true},
|
||||||
// TEST_CASE("Block Update", "[BoostAODE]")
|
{"maxTolerance", 3},
|
||||||
// {
|
{"convergence", true},
|
||||||
// auto clf = bayesnet::BoostAODE();
|
});
|
||||||
// auto raw = RawDatasets("mfeat-factors", true, 500);
|
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// clf.setHyperparameters({
|
REQUIRE(clf.getNumberOfNodes() == 58);
|
||||||
// {"bisection", true},
|
REQUIRE(clf.getNumberOfEdges() == 165);
|
||||||
// {"block_update", true},
|
REQUIRE(clf.getNotes().size() == 3);
|
||||||
// {"maxTolerance", 3},
|
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||||
// {"convergence", true},
|
REQUIRE(clf.getNotes()[1] == "Pairs not used in train: 1588");
|
||||||
// });
|
REQUIRE(clf.getNotes()[2] == "Number of models: 1");
|
||||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
auto score = clf.score(raw.X_test, raw.y_test);
|
||||||
// REQUIRE(clf.getNumberOfNodes() == 868);
|
auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||||
// REQUIRE(clf.getNumberOfEdges() == 1724);
|
REQUIRE(score == Catch::Approx(1.0f).epsilon(raw.epsilon));
|
||||||
// REQUIRE(clf.getNotes().size() == 3);
|
REQUIRE(scoret == Catch::Approx(1.0f).epsilon(raw.epsilon));
|
||||||
// REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
//
|
||||||
// REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of 216");
|
// std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
|
||||||
// REQUIRE(clf.getNotes()[2] == "Number of models: 4");
|
// std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
|
||||||
// auto score = clf.score(raw.X_test, raw.y_test);
|
// std::cout << "Notes size " << clf.getNotes().size() << std::endl;
|
||||||
// auto scoret = clf.score(raw.X_test, raw.y_test);
|
// for (auto note : clf.getNotes()) {
|
||||||
// REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
// std::cout << note << std::endl;
|
||||||
// REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
// }
|
||||||
// //
|
// std::cout << "Score " << score << std::endl;
|
||||||
// // std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
|
}
|
||||||
// // std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
|
TEST_CASE("Test graph b2a2de", "[BoostA2DE]")
|
||||||
// // std::cout << "Notes size " << clf.getNotes().size() << std::endl;
|
{
|
||||||
// // for (auto note : clf.getNotes()) {
|
auto raw = RawDatasets("iris", true);
|
||||||
// // std::cout << note << std::endl;
|
auto clf = bayesnet::BoostA2DE();
|
||||||
// // }
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
// // std::cout << "Score " << score << std::endl;
|
auto graph = clf.graph();
|
||||||
// }
|
REQUIRE(graph.size() == 26);
|
||||||
|
REQUIRE(graph[0] == "digraph BayesNet {\nlabel=<BayesNet BoostA2DE_0>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
|
||||||
|
REQUIRE(graph[1] == "\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n");
|
||||||
|
}
|
72
tests/TestMST.cc
Normal file
72
tests/TestMST.cc
Normal file
@@ -0,0 +1,72 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <catch2/catch_test_macros.hpp>
|
||||||
|
#include <catch2/catch_approx.hpp>
|
||||||
|
#include <catch2/generators/catch_generators.hpp>
|
||||||
|
#include <catch2/matchers/catch_matchers.hpp>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "TestUtils.h"
|
||||||
|
#include "bayesnet/utils/Mst.h"
|
||||||
|
|
||||||
|
|
||||||
|
TEST_CASE("MST::insertElement tests", "[MST]")
|
||||||
|
{
|
||||||
|
bayesnet::MST mst({}, torch::tensor({}), 0);
|
||||||
|
SECTION("Insert into an empty list")
|
||||||
|
{
|
||||||
|
std::list<int> variables;
|
||||||
|
mst.insertElement(variables, 5);
|
||||||
|
REQUIRE(variables == std::list<int>{5});
|
||||||
|
}
|
||||||
|
SECTION("Insert a non-duplicate element")
|
||||||
|
{
|
||||||
|
std::list<int> variables = { 1, 2, 3 };
|
||||||
|
mst.insertElement(variables, 4);
|
||||||
|
REQUIRE(variables == std::list<int>{4, 1, 2, 3});
|
||||||
|
}
|
||||||
|
SECTION("Insert a duplicate element")
|
||||||
|
{
|
||||||
|
std::list<int> variables = { 1, 2, 3 };
|
||||||
|
mst.insertElement(variables, 2);
|
||||||
|
REQUIRE(variables == std::list<int>{1, 2, 3});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_CASE("MST::reorder tests", "[MST]")
|
||||||
|
{
|
||||||
|
bayesnet::MST mst({}, torch::tensor({}), 0);
|
||||||
|
SECTION("Reorder simple graph")
|
||||||
|
{
|
||||||
|
std::vector<std::pair<float, std::pair<int, int>>> T = { {2.0, {1, 2}}, {1.0, {0, 1}} };
|
||||||
|
auto result = mst.reorder(T, 0);
|
||||||
|
REQUIRE(result == std::vector<std::pair<int, int>>{{0, 1}, { 1, 2 }});
|
||||||
|
}
|
||||||
|
SECTION("Reorder with disconnected graph")
|
||||||
|
{
|
||||||
|
std::vector<std::pair<float, std::pair<int, int>>> T = { {2.0, {1, 2}}, {1.0, {0, 1}} };
|
||||||
|
auto result = mst.reorder(T, 0);
|
||||||
|
REQUIRE(result == std::vector<std::pair<int, int>>{{0, 1}, { 2, 3 }});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_CASE("MST::maximumSpanningTree tests", "[MST]")
|
||||||
|
{
|
||||||
|
std::vector<std::string> features = { "A", "B", "C" };
|
||||||
|
auto weights = torch::tensor({
|
||||||
|
{0.0, 1.0, 2.0},
|
||||||
|
{1.0, 0.0, 3.0},
|
||||||
|
{2.0, 3.0, 0.0}
|
||||||
|
});
|
||||||
|
bayesnet::MST mst(features, weights, 0);
|
||||||
|
|
||||||
|
SECTION("MST of a complete graph")
|
||||||
|
{
|
||||||
|
auto result = mst.maximumSpanningTree();
|
||||||
|
REQUIRE(result.size() == 2); // Un MST para 3 nodos tiene 2 aristas
|
||||||
|
}
|
||||||
|
}
|
4811
tests/data/spambase.arff
Executable file
4811
tests/data/spambase.arff
Executable file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user