TestXBAODE complete, fix XBAODE error in no convergence & 99% coverage

This commit is contained in:
2025-03-13 01:28:48 +01:00
parent b1d317d8f4
commit 4ded6f51eb
3 changed files with 308 additions and 348 deletions

View File

@@ -4,12 +4,12 @@
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "TestUtils.h"
#include "bayesnet/ensembles/XBAODE.h"
#include <catch2/catch_approx.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <catch2/matchers/catch_matchers.hpp>
#include "TestUtils.h"
#include "bayesnet/ensembles/XBAODE.h"
TEST_CASE("Normal test", "[XBAODE]") {
auto raw = RawDatasets("iris", true);
@@ -78,171 +78,139 @@ TEST_CASE("Test used features in train note and score", "[XBAODE]") {
REQUIRE(score == Catch::Approx(0.819010437f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.819010437f).epsilon(raw.epsilon));
}
// TEST_CASE("Voting vs proba", "[XBAODE]")
// {
// auto raw = RawDatasets("iris", true);
// auto clf = bayesnet::XBAODE(false);
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states,
// raw.smoothing); auto score_proba = clf.score(raw.Xv, raw.yv); auto
// pred_proba = clf.predict_proba(raw.Xv); clf.setHyperparameters({
// {"predict_voting",true},
// });
// auto score_voting = clf.score(raw.Xv, raw.yv);
// auto pred_voting = clf.predict_proba(raw.Xv);
// REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
// REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
// REQUIRE(pred_voting[83][2] == Catch::Approx(1.0).epsilon(raw.epsilon));
// REQUIRE(pred_proba[83][2] ==
// Catch::Approx(0.86121525).epsilon(raw.epsilon)); REQUIRE(clf.dump_cpt()
// == ""); REQUIRE(clf.topological_order() == std::vector<std::string>());
// }
// TEST_CASE("Order asc, desc & random", "[XBAODE]")
// {
// auto raw = RawDatasets("glass", true);
// std::map<std::string, double> scores{
// {"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
// };
// for (const std::string& order : { "asc", "desc", "rand" }) {
// auto clf = bayesnet::XBAODE();
// clf.setHyperparameters({
// {"order", order},
// {"bisection", false},
// {"maxTolerance", 1},
// {"convergence", false},
// });
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states,
// raw.smoothing); auto score = clf.score(raw.Xv, raw.yv); auto scoret =
// clf.score(raw.Xt, raw.yt); INFO("XBAODE order: " << order);
// REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
// }
// }
// TEST_CASE("Oddities", "[XBAODE]")
// {
// auto clf = bayesnet::XBAODE();
// auto raw = RawDatasets("iris", true);
// auto bad_hyper = nlohmann::json{
// { { "order", "duck" } },
// { { "select_features", "duck" } },
// { { "maxTolerance", 0 } },
// { { "maxTolerance", 7 } },
// };
// for (const auto& hyper : bad_hyper.items()) {
// INFO("XBAODE hyper: " << hyper.value().dump());
// REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()),
// std::invalid_argument);
// }
// REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }),
// std::invalid_argument); auto bad_hyper_fit = nlohmann::json{
// { { "select_features","IWSS" }, { "threshold", -0.01 } },
// { { "select_features","IWSS" }, { "threshold", 0.51 } },
// { { "select_features","FCBF" }, { "threshold", 1e-8 } },
// { { "select_features","FCBF" }, { "threshold", 1.01 } },
// };
// for (const auto& hyper : bad_hyper_fit.items()) {
// INFO("XBAODE hyper: " << hyper.value().dump());
// clf.setHyperparameters(hyper.value());
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features,
// raw.className, raw.states, raw.smoothing), std::invalid_argument);
// }
// auto bad_hyper_fit2 = nlohmann::json{
// { { "alpha_block", true }, { "block_update", true } },
// { { "bisection", false }, { "block_update", true } },
// };
// for (const auto& hyper : bad_hyper_fit2.items()) {
// INFO("XBAODE hyper: " << hyper.value().dump());
// REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()),
// std::invalid_argument);
// }
// }
// TEST_CASE("Bisection Best", "[XBAODE]")
// {
// auto clf = bayesnet::XBAODE();
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
// clf.setHyperparameters({
// {"bisection", true},
// {"maxTolerance", 3},
// {"convergence", true},
// {"convergence_best", false},
// });
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className,
// raw.states, raw.smoothing); REQUIRE(clf.getNumberOfNodes() == 210);
// REQUIRE(clf.getNumberOfEdges() == 378);
// REQUIRE(clf.getNotes().size() == 1);
// REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
// auto score = clf.score(raw.X_test, raw.y_test);
// auto scoret = clf.score(raw.X_test, raw.y_test);
// REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
// }
// TEST_CASE("Bisection Best vs Last", "[XBAODE]")
// {
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
// auto clf = bayesnet::XBAODE(true);
// auto hyperparameters = nlohmann::json{
// {"bisection", true},
// {"maxTolerance", 3},
// {"convergence", true},
// {"convergence_best", true},
// };
// clf.setHyperparameters(hyperparameters);
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className,
// raw.states, raw.smoothing); auto score_best = clf.score(raw.X_test,
// raw.y_test); REQUIRE(score_best ==
// Catch::Approx(0.980000019f).epsilon(raw.epsilon));
// // Now we will set the hyperparameter to use the last accuracy
// hyperparameters["convergence_best"] = false;
// clf.setHyperparameters(hyperparameters);
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className,
// raw.states, raw.smoothing); auto score_last = clf.score(raw.X_test,
// raw.y_test); REQUIRE(score_last ==
// Catch::Approx(0.976666689f).epsilon(raw.epsilon));
// }
// TEST_CASE("Block Update", "[XBAODE]")
// {
// auto clf = bayesnet::XBAODE();
// auto raw = RawDatasets("mfeat-factors", true, 500);
// clf.setHyperparameters({
// {"bisection", true},
// {"block_update", true},
// {"maxTolerance", 3},
// {"convergence", true},
// });
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className,
// raw.states, raw.smoothing); REQUIRE(clf.getNumberOfNodes() == 868);
// REQUIRE(clf.getNumberOfEdges() == 1724);
// REQUIRE(clf.getNotes().size() == 3);
// REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models
// eliminated"); REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of
// 216"); REQUIRE(clf.getNotes()[2] == "Number of models: 4"); auto score =
// clf.score(raw.X_test, raw.y_test); auto scoret = clf.score(raw.X_test,
// raw.y_test); REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
// //
// // std::cout << "Number of nodes " << clf.getNumberOfNodes() <<
// std::endl;
// // std::cout << "Number of edges " << clf.getNumberOfEdges() <<
// std::endl;
// // std::cout << "Notes size " << clf.getNotes().size() << std::endl;
// // for (auto note : clf.getNotes()) {
// // std::cout << note << std::endl;
// // }
// // std::cout << "Score " << score << std::endl;
// }
// TEST_CASE("Alphablock", "[XBAODE]")
// {
// auto clf_alpha = bayesnet::XBAODE();
// auto clf_no_alpha = bayesnet::XBAODE();
// auto raw = RawDatasets("diabetes", true);
// clf_alpha.setHyperparameters({
// {"alpha_block", true},
// });
// clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className,
// raw.states, raw.smoothing); clf_no_alpha.fit(raw.X_train, raw.y_train,
// raw.features, raw.className, raw.states, raw.smoothing); auto score_alpha
// = clf_alpha.score(raw.X_test, raw.y_test); auto score_no_alpha =
// clf_no_alpha.score(raw.X_test, raw.y_test); REQUIRE(score_alpha ==
// Catch::Approx(0.720779f).epsilon(raw.epsilon)); REQUIRE(score_no_alpha ==
// Catch::Approx(0.733766f).epsilon(raw.epsilon));
// }
TEST_CASE("Order asc, desc & random", "[XBAODE]") {
auto raw = RawDatasets("glass", true);
std::map<std::string, double> scores{{"asc", 0.83645f}, {"desc", 0.84579f}, {"rand", 0.84112}};
for (const std::string &order : {"asc", "desc", "rand"}) {
auto clf = bayesnet::XBAODE();
clf.setHyperparameters({
{"order", order},
{"bisection", false},
{"maxTolerance", 1},
{"convergence", false},
});
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
auto score = clf.score(raw.Xv, raw.yv);
auto scoret = clf.score(raw.Xt, raw.yt);
INFO("XBAODE order: " << order);
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
}
}
TEST_CASE("Oddities", "[XBAODE]") {
auto clf = bayesnet::XBAODE();
auto raw = RawDatasets("iris", true);
auto bad_hyper = nlohmann::json{
{{"order", "duck"}},
{{"select_features", "duck"}},
{{"maxTolerance", 0}},
{{"maxTolerance", 7}},
};
for (const auto &hyper : bad_hyper.items()) {
INFO("XBAODE hyper: " << hyper.value().dump());
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
}
REQUIRE_THROWS_AS(clf.setHyperparameters({{"maxTolerance", 0}}), std::invalid_argument);
auto bad_hyper_fit = nlohmann::json{
{{"select_features", "IWSS"}, {"threshold", -0.01}},
{{"select_features", "IWSS"}, {"threshold", 0.51}},
{{"select_features", "FCBF"}, {"threshold", 1e-8}},
{{"select_features", "FCBF"}, {"threshold", 1.01}},
};
for (const auto &hyper : bad_hyper_fit.items()) {
INFO("XBAODE hyper: " << hyper.value().dump());
clf.setHyperparameters(hyper.value());
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
std::invalid_argument);
}
auto bad_hyper_fit2 = nlohmann::json{
{{"alpha_block", true}, {"block_update", true}},
{{"bisection", false}, {"block_update", true}},
};
for (const auto &hyper : bad_hyper_fit2.items()) {
INFO("XBAODE hyper: " << hyper.value().dump());
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
}
}
TEST_CASE("Bisection Best", "[XBAODE]") {
auto clf = bayesnet::XBAODE();
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
clf.setHyperparameters({
{"bisection", true},
{"maxTolerance", 3},
{"convergence", true},
{"convergence_best", false},
});
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 210);
REQUIRE(clf.getNumberOfEdges() == 406);
REQUIRE(clf.getNotes().size() == 1);
REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
auto score = clf.score(raw.X_test, raw.y_test);
auto scoret = clf.score(raw.X_test, raw.y_test);
REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
}
TEST_CASE("Bisection Best vs Last", "[XBAODE]") {
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
auto clf = bayesnet::XBAODE();
auto hyperparameters = nlohmann::json{
{"bisection", true},
{"maxTolerance", 3},
{"convergence", true},
{"convergence_best", true},
};
clf.setHyperparameters(hyperparameters);
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
auto score_best = clf.score(raw.X_test, raw.y_test);
REQUIRE(score_best == Catch::Approx(0.973333359f).epsilon(raw.epsilon));
// Now we will set the hyperparameter to use the last accuracy
hyperparameters["convergence_best"] = false;
clf.setHyperparameters(hyperparameters);
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
auto score_last = clf.score(raw.X_test, raw.y_test);
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
}
TEST_CASE("Block Update", "[XBAODE]") {
auto clf = bayesnet::XBAODE();
auto raw = RawDatasets("mfeat-factors", true, 500);
clf.setHyperparameters({
{"bisection", true},
{"block_update", true},
{"maxTolerance", 3},
{"convergence", true},
});
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 1085);
REQUIRE(clf.getNumberOfEdges() == 2165);
REQUIRE(clf.getNotes().size() == 3);
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
REQUIRE(clf.getNotes()[1] == "Used features in train: 20 of 216");
REQUIRE(clf.getNotes()[2] == "Number of models: 5");
auto score = clf.score(raw.X_test, raw.y_test);
auto scoret = clf.score(raw.X_test, raw.y_test);
REQUIRE(score == Catch::Approx(1.0f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(1.0f).epsilon(raw.epsilon));
//
// std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
// std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
// std::cout << "Notes size " << clf.getNotes().size() << std::endl;
// for (auto note : clf.getNotes()) {
// std::cout << note << std::endl;
// }
// std::cout << "Score " << score << std::endl;
}
TEST_CASE("Alphablock", "[XBAODE]") {
auto clf_alpha = bayesnet::XBAODE();
auto clf_no_alpha = bayesnet::XBAODE();
auto raw = RawDatasets("diabetes", true);
clf_alpha.setHyperparameters({
{"alpha_block", true},
});
clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
clf_no_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
auto score_alpha = clf_alpha.score(raw.X_test, raw.y_test);
auto score_no_alpha = clf_no_alpha.score(raw.X_test, raw.y_test);
REQUIRE(score_alpha == Catch::Approx(0.720779f).epsilon(raw.epsilon));
REQUIRE(score_no_alpha == Catch::Approx(0.733766f).epsilon(raw.epsilon));
}