Implement classifier.predict_proba & test
This commit is contained in:
@@ -165,7 +165,6 @@ TEST_CASE("BoostAODE test used features in train note", "[BayesNet]")
|
||||
{"convergence", true},
|
||||
{"repeatSparent",true},
|
||||
{"select_features","CFS"},
|
||||
{"tolerance", 3}
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
@@ -175,3 +174,42 @@ TEST_CASE("BoostAODE test used features in train note", "[BayesNet]")
|
||||
REQUIRE(clf.getNotes()[1] == "Used features in train: 7 of 8");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 8");
|
||||
}
|
||||
TEST_CASE("TAN predict_proba", "[BayesNet]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto y_pred_proba = clf.predict_proba(raw.Xv);
|
||||
auto y_pred = clf.predict(raw.Xv);
|
||||
auto yt_pred_proba = clf.predict_proba(raw.Xt);
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
REQUIRE(y_pred.size() == raw.yv.size());
|
||||
REQUIRE(y_pred_proba[0].size() == 3);
|
||||
REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
||||
for (int i = 0; i < y_pred_proba.size(); ++i) {
|
||||
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
||||
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
REQUIRE(predictedClass == y_pred[i]);
|
||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// TEST_CASE("BoostAODE predict_proba", "[BayesNet]")
|
||||
// {
|
||||
// auto raw = RawDatasets("iris", true);
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// auto y_pred = clf.predict_proba(raw.Xv);
|
||||
// REQUIRE(y_pred.size(0) == raw.yv.size(0));
|
||||
// REQUIRE(y_pred.size(1) == 3);
|
||||
// auto y_pred2 = clf.predict_proba(raw.Xv);
|
||||
// REQUIRE(y_pred2.size(0) == raw.yv.size(0));
|
||||
// REQUIRE(y_pred2.size(1) == 3);
|
||||
// REQUIRE(y_pred.equal(y_pred2));
|
||||
// for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
// for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
// REQUIRE(y_pred[i][j].item<float>() == y_pred2[i][j].item<float>());
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
Reference in New Issue
Block a user