Remove predict_single max_models

This commit is contained in:
2024-03-19 11:35:43 +01:00
parent eb97a5a14b
commit 422129802a
5 changed files with 182 additions and 50 deletions

View File

@@ -16,20 +16,15 @@ namespace bayesnet {
void trainModel(const torch::Tensor& weights) override;
private:
std::unordered_set<int> initializeModels();
torch::Tensor ensemble_predict(torch::Tensor& X, SPODE* model);
torch::Tensor dataset_;
torch::Tensor X_train, y_train, X_test, y_test;
// Hyperparameters
bool repeatSparent = false; // if true, a feature can be selected more than once
int maxModels = 0;
bool bisection = false; // if true, use bisection stratety to add k models at once to the ensemble
int tolerance = 0;
bool predict_single = true; // wether the last model is used to predict in training or the whole ensemble
std::string order_algorithm; // order to process the KBest features asc, desc, rand
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection
std::string select_features_algorithm = "desc"; // Selected feature selection algorithm
bool initialize_prob_table; // if true, initialize the prob_table with the first model (used in train)
torch::Tensor prob_table; // Table of probabilities for ensemble predicting if predict_single is false
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
};