const functions
This commit is contained in:
@@ -2,10 +2,11 @@
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) { cout << "SPODELd constructor" << endl; }
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
cout << "YOOOOOOOOOOOOOOOOOOOo" << endl;
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
@@ -16,7 +17,6 @@ namespace bayesnet {
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
SPODE::fit(dataset, features, className, states);
|
||||
localDiscretizationProposal(states, model);
|
||||
//model.fit(SPODE::Xv, SPODE::yv, features, className);
|
||||
return *this;
|
||||
}
|
||||
Tensor SPODELd::predict(Tensor& X)
|
||||
@@ -24,7 +24,11 @@ namespace bayesnet {
|
||||
auto Xt = prepareX(X);
|
||||
return SPODE::predict(Xt);
|
||||
}
|
||||
vector<string> SPODELd::graph(const string& name)
|
||||
void SPODELd::test()
|
||||
{
|
||||
cout << "SPODELd test" << endl;
|
||||
}
|
||||
vector<string> SPODELd::graph(const string& name) const
|
||||
{
|
||||
return SPODE::graph(name);
|
||||
}
|
||||
|
Reference in New Issue
Block a user