Add quiet mode to b_main
Reduce output when --quiet is set, not showing fold info
This commit is contained in:
@@ -102,12 +102,12 @@ namespace platform {
|
||||
cout << data.dump(4) << endl;
|
||||
}
|
||||
|
||||
void Experiment::go(vector<string> filesToProcess)
|
||||
void Experiment::go(vector<string> filesToProcess, bool quiet)
|
||||
{
|
||||
cout << "*** Starting experiment: " << title << " ***" << endl;
|
||||
for (auto fileName : filesToProcess) {
|
||||
cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
cross_validation(fileName);
|
||||
cross_validation(fileName, quiet);
|
||||
cout << endl;
|
||||
}
|
||||
}
|
||||
@@ -132,7 +132,7 @@ namespace platform {
|
||||
cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
|
||||
}
|
||||
void Experiment::cross_validation(const string& fileName)
|
||||
void Experiment::cross_validation(const string& fileName, bool quiet)
|
||||
{
|
||||
auto datasets = platform::Datasets(discretized, Paths::datasets());
|
||||
// Get dataset
|
||||
@@ -141,7 +141,9 @@ namespace platform {
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
if (!quiet) {
|
||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
}
|
||||
// Prepare Result
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
@@ -159,7 +161,8 @@ namespace platform {
|
||||
Timer train_timer, test_timer;
|
||||
int item = 0;
|
||||
for (auto seed : randomSeeds) {
|
||||
cout << "(" << seed << ") doing Fold: " << flush;
|
||||
if (!quiet)
|
||||
cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nfolds, y, seed);
|
||||
@@ -180,10 +183,12 @@ namespace platform {
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
@@ -191,13 +196,15 @@ namespace platform {
|
||||
// Score train
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
cout << "\b\b\b, " << flush;
|
||||
if (!quiet)
|
||||
cout << "\b\b\b, " << flush;
|
||||
// Store results and times in vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
@@ -206,7 +213,8 @@ namespace platform {
|
||||
item++;
|
||||
clf.reset();
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
if (!quiet)
|
||||
cout << "end. " << flush;
|
||||
delete fold;
|
||||
}
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
|
Reference in New Issue
Block a user