Create BoostA2DE base class
This commit is contained in:
38
bayesnet/ensembles/BoostA2DE.h
Normal file
38
bayesnet/ensembles/BoostA2DE.h
Normal file
@@ -0,0 +1,38 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef BOOSTA2DE_H
|
||||
#define BOOSTA2DE_H
|
||||
#include <map>
|
||||
#include "boost.h"
|
||||
#include "bayesnet/classifiers/SPnDE.h"
|
||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||
#include "Ensemble.h"
|
||||
namespace bayesnet {
|
||||
class BoostA2DE : public Ensemble {
|
||||
public:
|
||||
explicit BoostA2DE(bool predict_voting = false);
|
||||
virtual ~BoostA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false;
|
||||
};
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user