Add XBAODE & XSpode classifiers

This commit is contained in:
2025-03-09 19:15:00 +01:00
parent a70ac3e883
commit 06621ea361
7 changed files with 732 additions and 1 deletions

View File

@@ -0,0 +1,379 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "XSPODE.h"
namespace bayesnet {
// --------------------------------------
// Constructor
// --------------------------------------
XSpode::XSpode(int spIndex)
: superParent_{ spIndex },
nFeatures_{ 0 },
statesClass_{ 0 },
alpha_{ 1.0 },
initializer_{ 1.0 },
semaphore_{ CountingSemaphore::getInstance() }, Classifier(Network())
{
}
void XSpode::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, torch::Tensor& weights_, const Smoothing_t smoothing)
{
m = X[0].size();
n = X.size();
buildModel(weights_);
trainModel(weights_, smoothing);
}
// --------------------------------------
// trainModel
// --------------------------------------
// Initialize storage needed for the super-parent and child features counts and probs.
// --------------------------------------
void XSpode::buildModel(const torch::Tensor& weights)
{
int numInstances = m;
nFeatures_ = n;
// Derive the number of states for each feature and for the class.
// (This is just one approach; adapt to match your environment.)
// Here, we assume the user also gave us the total #states per feature in e.g. statesMap.
// We'll simply reconstruct the integer states_ array. The last entry is statesClass_.
states_.resize(nFeatures_);
for (int f = 0; f < nFeatures_; f++) {
// Suppose you look up in “statesMap” by the feature name, or read directly from X.
// We'll assume states_[f] = max value in X[f] + 1.
states_[f] = dataset[f].max().item<int>() + 1;
}
// For the class: states_.back() = max(y)+1
statesClass_ = dataset[-1].max().item<int>() + 1;
// Initialize counts
classCounts_.resize(statesClass_, 0.0);
// p(x_sp = spVal | c)
// We'll store these counts in spFeatureCounts_[spVal * statesClass_ + c].
spFeatureCounts_.resize(states_[superParent_] * statesClass_, 0.0);
// For each child ≠ sp, we store p(childVal| c, spVal) in a separate block of childCounts_.
// childCounts_ will be sized as sum_{child≠sp} (states_[child] * statesClass_ * states_[sp]).
// We also need an offset for each child to index into childCounts_.
childOffsets_.resize(nFeatures_, -1);
int totalSize = 0;
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent_) continue; // skip sp
childOffsets_[f] = totalSize;
// block size for this child's counts: states_[f] * statesClass_ * states_[superParent_]
totalSize += (states_[f] * statesClass_ * states_[superParent_]);
}
childCounts_.resize(totalSize, 0.0);
}
// --------------------------------------
// buildModel
// --------------------------------------
//
// We only store conditional probabilities for:
// p(x_sp| c) (the super-parent feature)
// p(x_child| c, x_sp) for all child ≠ sp
//
// --------------------------------------
void XSpode::trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
// Accumulate raw counts
for (int i = 0; i < m; i++) {
std::vector<int> instance(nFeatures_ + 1);
for (int f = 0; f < nFeatures_; f++) {
instance[f] = dataset[f][i].item<int>();
}
instance[nFeatures_] = dataset[-1].item<int>();
addSample(instance, weights[i].item<double>());
}
switch (smoothing) {
case bayesnet::Smoothing_t::ORIGINAL:
alpha_ = 1.0 / m;
break;
case bayesnet::Smoothing_t::LAPLACE:
alpha_ = 1.0;
break;
default:
alpha_ = 0.0; // No smoothing
}
initializer_ = std::numeric_limits<double>::max() / (nFeatures_ * nFeatures_); // for numerical stability
// Convert raw counts to probabilities
computeProbabilities();
}
// --------------------------------------
// addSample
// --------------------------------------
//
// instance has size nFeatures_ + 1, with the class at the end.
// We add 1 to the appropriate counters for each (c, superParentVal, childVal).
//
void XSpode::addSample(const std::vector<int>& instance, double weight)
{
if (weight <= 0.0) return;
int c = instance.back();
// (A) increment classCounts
classCounts_[c] += weight;
// (B) increment super-parent counts => p(x_sp | c)
int spVal = instance[superParent_];
spFeatureCounts_[spVal * statesClass_ + c] += weight;
// (C) increment child counts => p(childVal | c, x_sp)
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent_) continue;
int childVal = instance[f];
int offset = childOffsets_[f];
// Compute index in childCounts_.
// Layout: [ offset + (spVal * states_[f] + childVal) * statesClass_ + c ]
int blockSize = states_[f] * statesClass_;
int idx = offset + spVal * blockSize + childVal * statesClass_ + c;
childCounts_[idx] += weight;
}
}
// --------------------------------------
// computeProbabilities
// --------------------------------------
//
// Once all samples are added in COUNTS mode, call this to:
// p(c)
// p(x_sp = spVal | c)
// p(x_child = v | c, x_sp = s_sp)
//
// --------------------------------------
void XSpode::computeProbabilities()
{
double totalCount = std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
// p(c) => classPriors_
classPriors_.resize(statesClass_, 0.0);
if (totalCount <= 0.0) {
// fallback => uniform
double unif = 1.0 / static_cast<double>(statesClass_);
for (int c = 0; c < statesClass_; c++) {
classPriors_[c] = unif;
}
} else {
for (int c = 0; c < statesClass_; c++) {
classPriors_[c] = (classCounts_[c] + alpha_)
/ (totalCount + alpha_ * statesClass_);
}
}
// p(x_sp | c)
spFeatureProbs_.resize(spFeatureCounts_.size());
// denominator for spVal * statesClass_ + c is just classCounts_[c] + alpha_ * (#states of sp)
int spCard = states_[superParent_];
for (int spVal = 0; spVal < spCard; spVal++) {
for (int c = 0; c < statesClass_; c++) {
double denom = classCounts_[c] + alpha_ * spCard;
double num = spFeatureCounts_[spVal * statesClass_ + c] + alpha_;
spFeatureProbs_[spVal * statesClass_ + c] = (denom <= 0.0 ? 0.0 : num / denom);
}
}
// p(x_child | c, x_sp)
childProbs_.resize(childCounts_.size());
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent_) continue;
int offset = childOffsets_[f];
int childCard = states_[f];
// For each spVal, c, childVal in childCounts_:
for (int spVal = 0; spVal < spCard; spVal++) {
for (int childVal = 0; childVal < childCard; childVal++) {
for (int c = 0; c < statesClass_; c++) {
int idx = offset + spVal * (childCard * statesClass_)
+ childVal * statesClass_
+ c;
double num = childCounts_[idx] + alpha_;
// denominator = spFeatureCounts_[spVal * statesClass_ + c] + alpha_ * (#states of child)
double denom = spFeatureCounts_[spVal * statesClass_ + c]
+ alpha_ * childCard;
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
}
}
}
}
}
// --------------------------------------
// predict_proba
// --------------------------------------
//
// For a single instance x of dimension nFeatures_:
// P(c | x) ∝ p(c) × p(x_sp | c) × ∏(child ≠ sp) p(x_child | c, x_sp).
//
// --------------------------------------
std::vector<double> XSpode::predict_proba(const std::vector<int>& instance) const
{
std::vector<double> probs(statesClass_, 0.0);
// Multiply p(c) × p(x_sp | c)
int spVal = instance[superParent_];
for (int c = 0; c < statesClass_; c++) {
double pc = classPriors_[c];
double pSpC = spFeatureProbs_[spVal * statesClass_ + c];
probs[c] = pc * pSpC * initializer_;
}
// Multiply by each childs probability p(x_child | c, x_sp)
for (int feature = 0; feature < nFeatures_; feature++) {
if (feature == superParent_) continue; // skip sp
int sf = instance[feature];
int offset = childOffsets_[feature];
int childCard = states_[feature]; // not used directly, but for clarity
// Index into childProbs_ = offset + spVal*(childCard*statesClass_) + childVal*statesClass_ + c
int base = offset + spVal * (childCard * statesClass_) + sf * statesClass_;
for (int c = 0; c < statesClass_; c++) {
probs[c] *= childProbs_[base + c];
}
}
// Normalize
normalize(probs);
return probs;
}
std::vector<std::vector<double>> XSpode::predict_proba(const std::vector<std::vector<int>>& test_data)
{
int test_size = test_data[0].size();
int sample_size = test_data.size();
auto probabilities = std::vector<std::vector<double>>(test_size, std::vector<double>(statesClass_));
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin, int chunk, int sample_size, std::vector<std::vector<double>>& predictions) {
std::string threadName = "(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = predict_proba(instance);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
}
for (auto& thread : threads) {
thread.join();
}
return probabilities;
}
// --------------------------------------
// predict
// --------------------------------------
//
// Return the class argmax( P(c|x) ).
// --------------------------------------
int XSpode::predict(const std::vector<int>& instance) const
{
auto p = predict_proba(instance);
return static_cast<int>(std::distance(p.begin(),
std::max_element(p.begin(), p.end())));
}
std::vector<int> XSpode::predict(std::vector<std::vector<int>>& test_data)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
for (size_t i = 0; i < probabilities.size(); i++) {
predictions[i] = std::distance(probabilities[i].begin(), std::max_element(probabilities[i].begin(), probabilities[i].end()));
}
return predictions;
}
// --------------------------------------
// Utility: normalize
// --------------------------------------
void XSpode::normalize(std::vector<double>& v) const
{
double sum = 0.0;
for (auto val : v) { sum += val; }
if (sum <= 0.0) {
return;
}
for (auto& val : v) {
val /= sum;
}
}
// --------------------------------------
// representation of the model
// --------------------------------------
std::string XSpode::to_string() const
{
std::ostringstream oss;
oss << "---- SPODE Model ----" << std::endl
<< "nFeatures_ = " << nFeatures_ << std::endl
<< "superParent_ = " << superParent_ << std::endl
<< "statesClass_ = " << statesClass_ << std::endl
<< std::endl;
oss << "States: [";
for (int s : states_) oss << s << " ";
oss << "]" << std::endl;
oss << "classCounts_: [";
for (double c : classCounts_) oss << c << " ";
oss << "]" << std::endl;
oss << "classPriors_: [";
for (double c : classPriors_) oss << c << " ";
oss << "]" << std::endl;
oss << "spFeatureCounts_: size = " << spFeatureCounts_.size() << std::endl << "[";
for (double c : spFeatureCounts_) oss << c << " ";
oss << "]" << std::endl;
oss << "spFeatureProbs_: size = " << spFeatureProbs_.size() << std::endl << "[";
for (double c : spFeatureProbs_) oss << c << " ";
oss << "]" << std::endl;
oss << "childCounts_: size = " << childCounts_.size() << std::endl << "[";
for (double cc : childCounts_) oss << cc << " ";
oss << "]" << std::endl;
for (double cp : childProbs_) oss << cp << " ";
oss << "]" << std::endl;
oss << "childOffsets_: [";
for (int co : childOffsets_) oss << co << " ";
oss << "]" << std::endl;
oss << "---------------------" << std::endl;
return oss.str();
}
int XSpode::getNumberOfNodes() const { return nFeatures_ + 1; }
int XSpode::getClassNumStates() const { return statesClass_; }
int XSpode::getNFeatures() const { return nFeatures_; }
int XSpode::getNumberOfStates() const
{
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
}
int XSpode::getNumberOfEdges() const
{
return nFeatures_ * (2 * nFeatures_ - 1);
}
std::vector<int>& XSpode::getStates() { return states_; }
}

View File

@@ -0,0 +1,79 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef XSPODE_H
#define XSPODE_H
#include <vector>
#include <map>
#include <stdexcept>
#include <algorithm>
#include <numeric>
#include <string>
#include <cmath>
#include <limits>
#include <sstream>
#include <iostream>
#include <torch/torch.h>
#include "Classifier.h"
#include "bayesnet/utils/CountingSemaphore.h"
namespace bayesnet {
class XSpode : public Classifier {
public:
explicit XSpode(int spIndex);
std::vector<double> predict_proba(const std::vector<int>& instance) const;
std::vector<std::vector<double>> predict_proba(const std::vector<std::vector<int>>& test_data);
int predict(const std::vector<int>& instance) const;
std::vector<int> predict(std::vector<std::vector<int>>& test_data);
void normalize(std::vector<double>& v) const;
std::string to_string() const;
int statesClass() const;
int getNFeatures() const;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
int getClassNumStates() const override;
std::vector<int>& getStates();
std::vector<std::string> graph(const std::string& title) const override { return std::vector<std::string>({title}); }
void fit(std::vector<std::vector<int>>& X, std::vector<int>& y, torch::Tensor& weights_, const Smoothing_t smoothing);
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
private:
void addSample(const std::vector<int>& instance, double weight);
void computeProbabilities();
int superParent_;
int nFeatures_;
int statesClass_;
std::vector<int> states_; // [states_feat0, ..., states_feat(N-1)] (class not included in this array)
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
// Class counts
std::vector<double> classCounts_; // [c], accumulative
std::vector<double> classPriors_; // [c], after normalization
// For p(x_sp = spVal | c)
std::vector<double> spFeatureCounts_; // [spVal * statesClass_ + c]
std::vector<double> spFeatureProbs_; // same shape, after normalization
// For p(x_child = childVal | x_sp = spVal, c)
// childCounts_ is big enough to hold all child features except sp:
// For each child f, we store childOffsets_[f] as the start index, then
// childVal, spVal, c => the data.
std::vector<double> childCounts_;
std::vector<double> childProbs_;
std::vector<int> childOffsets_;
double alpha_ = 1.0;
double initializer_; // for numerical stability
CountingSemaphore& semaphore_;
};
}
#endif // XSPODE_H

View File

@@ -4,7 +4,6 @@
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// *************************************************************** // ***************************************************************
#include "Ensemble.h" #include "Ensemble.h"
#include "bayesnet/utils/CountingSemaphore.h"
namespace bayesnet { namespace bayesnet {

View File

@@ -0,0 +1,179 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <random>
#include <set>
#include <functional>
#include <limits.h>
#include <tuple>
#include "XBAODE.h"
#include "bayesnet/classifiers/XSPODE.h"
#include "bayesnet/utils/TensorUtils.hpp"
namespace bayesnet {
XBAODE::XBAODE()
{
validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
"predict_voting", "select_features" };
}
void XBAODE::add_model(std::unique_ptr<Classifier> model, double significance)
{
models.push_back(std::move(model));
n_models++;
significanceModels.push_back(significance);
}
void XBAODE::remove_last_model()
{
models.pop_back();
significanceModels.pop_back();
n_models--;
}
std::vector<int> XBAODE::initializeModels(const Smoothing_t smoothing)
{
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
std::vector<int> featuresSelected = featureSelection(weights_);
for (const int& feature : featuresSelected) {
std::unique_ptr<Classifier> model = std::make_unique<XSpode>(feature);
model->fit(dataset, features, className, states, weights_, smoothing);
add_model(std::move(model), 1.0);
}
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
return featuresSelected;
}
void XBAODE::trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
X_train_ = TensorUtils::to_matrix(X_train);
y_train_ = TensorUtils::to_vector<int>(y_train);
X_test_ = TensorUtils::to_matrix(X_test);
y_test_ = TensorUtils::to_vector<int>(y_test);
significanceModels.resize(n, 0.0); // n initialized in Classifier.cc
fitted = true;
double alpha_t;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool finished = false;
std::vector<int> featuresUsed;
n_models = 0;
if (selectFeatures) {
featuresUsed = initializeModels(smoothing);
auto ypred = predict(X_train_);
auto ypred_t = torch::tensor(ypred);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
// Update significance of the models
for (const int& feature : featuresUsed) {
significanceModels.pop_back();
}
for (const int& feature : featuresUsed) {
significanceModels.push_back(alpha_t);
}
// VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, n_models);
if (finished) {
return;
}
}
int numItemsPack = 0; // The counter of the models inserted in the current pack
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double improvement = 1.0;
double convergence_threshold = 1e-4;
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
// Step 0: Set the finish condition
// epsilon sub t > 0.5 => inverse the weights_ policy
// validation error is not decreasing
// run out of features
bool ascending = order_algorithm == bayesnet::Orders.ASC;
std::mt19937 g{ 173 };
while (!finished) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
if (order_algorithm == bayesnet::Orders.RAND) {
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
}
// Remove used features
featureSelection.erase(remove_if(featureSelection.begin(), featureSelection.end(), [&](auto x)
{ return std::find(featuresUsed.begin(), featuresUsed.end(), x) != featuresUsed.end();}),
featureSelection.end()
);
int k = bisection ? pow(2, tolerance) : 1;
int counter = 0; // The model counter of the current pack
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
while (counter++ < k && featureSelection.size() > 0) {
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
model = std::make_unique<XSpode>(feature);
dynamic_cast<XSpode*>(model.get())->fit(X_train_, y_train_, weights_, smoothing); // using exclusive XSpode fit method
std::vector<int> ypred;
if (alpha_block) {
//
// Compute the prediction with the current ensemble + model
//
// Add the model to the ensemble
add_model(std::move(model), 1.0);
// Compute the prediction
ypred = predict(X_train_);
// Remove the model from the ensemble
significanceModels.pop_back();
remove_last_model();
} else {
ypred = model->predict(X_train_);
}
// Step 3.1: Compute the classifier amout of say
auto ypred_t = torch::tensor(ypred);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
// Step 3.4: Store classifier and its accuracy to weigh its future vote
numItemsPack++;
featuresUsed.push_back(feature);
add_model(std::move(model), alpha_t);
// VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d featuresUsed: %zu", finished, numItemsPack, n_models, featuresUsed.size());
} // End of the pack
if (convergence && !finished) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
} else {
improvement = accuracy - priorAccuracy;
}
if (improvement < convergence_threshold) {
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
tolerance++;
} else {
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
tolerance = 0; // Reset the counter if the model performs better
numItemsPack = 0;
}
if (convergence_best) {
// Keep the best accuracy until now as the prior accuracy
priorAccuracy = std::max(accuracy, priorAccuracy);
} else {
// Keep the last accuray obtained as the prior accuracy
priorAccuracy = accuracy;
}
}
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
}
if (tolerance > maxTolerance) {
if (numItemsPack < n_models) {
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
for (int i = featuresUsed.size() - 1; i >= featuresUsed.size() - numItemsPack; --i) {
remove_last_model();
significanceModels[featuresUsed[i]] = 0.0;
}
// VLOG_SCOPE_F(4, "*Convergence threshold %d models left & %d features used.", n_models, featuresUsed.size());
} else {
notes.push_back("Convergence threshold reached & 0 models eliminated");
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
}
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
status = bayesnet::WARNING;
}
notes.push_back("Number of models: " + std::to_string(n_models));
return;
}
}

View File

@@ -0,0 +1,36 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef XBAODE_H
#define XBAODE_H
#include <vector>
#include <cmath>
#include <algorithm>
#include <limits>
#include "bayesnet/classifiers/XSPODE.h"
#include "Boost.h"
namespace bayesnet {
class XBAODE : public Boost {
// Hay que hacer un vector de modelos entrenados y hacer un predict ensemble con todos ellos
// Probar XA1DE con smooth original y laplace y comprobar diferencias si se pasan pesos a 1 o a 1/m
public:
XBAODE();
std::string getVersion() override { return version; };
protected:
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
private:
void add_model(std::unique_ptr<Classifier> model, double significance);
void remove_last_model();
std::vector<int> initializeModels(const Smoothing_t smoothing);
std::vector<std::vector<int>> X_train_, X_test_;
std::vector<int> y_train_, y_test_;
std::string version = "0.9.7";
};
}
#endif // XBAODE_H

View File

@@ -32,6 +32,14 @@ public:
cv_.notify_one(); cv_.notify_one();
} }
} }
uint getCount() const
{
return count_;
}
uint getMaxCount() const
{
return max_count_;
}
private: private:
CountingSemaphore() CountingSemaphore()
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))), : max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),

View File

@@ -0,0 +1,51 @@
#ifndef TENSORUTILS_HPP
#define TENSORUTILS_HPP
#include <torch/torch.h>
#include <vector>
namespace bayesnet {
class TensorUtils {
public:
static std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
{
// Ensure tensor is contiguous in memory
auto X_contig = X.contiguous();
// Access tensor data pointer directly
auto data_ptr = X_contig.data_ptr<int>();
// IF you are using int64_t as the data type, use the following line
//auto data_ptr = X_contig.data_ptr<int64_t>();
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
// Prepare output container
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
// Fill the 2D vector in a single loop using pointer arithmetic
int rows = X.size(0);
int cols = X.size(1);
for (int i = 0; i < rows; ++i) {
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
}
return data;
}
template <typename T>
static std::vector<T> to_vector(const torch::Tensor& y)
{
// Ensure the tensor is contiguous in memory
auto y_contig = y.contiguous();
// Access data pointer
auto data_ptr = y_contig.data_ptr<T>();
// Prepare output container
std::vector<T> data(y.size(0));
// Copy data efficiently
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
return data;
}
};
}
#endif // TENSORUTILS_HPP