Complete predict & predict_proba in ensemble
This commit is contained in:
@@ -2,9 +2,6 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "TAN.h"
|
||||
#include "SPODE.h"
|
||||
@@ -16,12 +13,9 @@
|
||||
#include "AODELd.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
TEST_CASE("Library check version", "[BayesNet]")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
REQUIRE(clf.getVersion() == "1.0.2");
|
||||
}
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
const std::string ACTUAL_VERSION = "1.0.3";
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[BayesNet]")
|
||||
{
|
||||
map <pair<std::string, std::string>, float> scores = {
|
||||
// Diabetes
|
||||
@@ -37,87 +31,34 @@ TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
||||
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
||||
};
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models = {
|
||||
{"AODE", new bayesnet::AODE()}, {"AODELd", new bayesnet::AODELd()},
|
||||
{"BoostAODE", new bayesnet::BoostAODE()},
|
||||
{"KDB", new bayesnet::KDB(2)}, {"KDBLd", new bayesnet::KDBLd(2)},
|
||||
{"SPODE", new bayesnet::SPODE(1)}, {"SPODELd", new bayesnet::SPODELd(1)},
|
||||
{"TAN", new bayesnet::TAN()}, {"TANLd", new bayesnet::TANLd()}
|
||||
};
|
||||
std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "SPODELd", "TAN", "TANLd");
|
||||
auto clf = models[name];
|
||||
|
||||
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto raw = RawDatasets(file_name, false);
|
||||
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
SECTION("Test " + name + " classifier")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
//scores[{file_name, "TAN"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(raw.epsilon));
|
||||
for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) {
|
||||
auto clf = models[name];
|
||||
auto discretize = name.substr(name.length() - 2) != "Ld";
|
||||
auto raw = RawDatasets(file_name, discretize);
|
||||
clf->fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf->score(raw.Xt, raw.yt);
|
||||
INFO("File: " + file_name);
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
SECTION("Test TANLd classifier (" + file_name + ")")
|
||||
SECTION("Library check version")
|
||||
{
|
||||
auto clf = bayesnet::TANLd();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
//scores[{file_name, "TANLd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TANLd"}]).epsilon(raw.epsilon));
|
||||
INFO("Checking version of " + name + " classifier");
|
||||
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
||||
}
|
||||
SECTION("Test KDB classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
//scores[{file_name, "KDB"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test KDBLd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDBLd(2);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
//scores[{file_name, "KDBLd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDBLd"
|
||||
}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODE(1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "SPODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test SPODELd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODELd(1);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
// scores[{file_name, "SPODELd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODELd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test AODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "AODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test AODELd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODELd();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
// scores[{file_name, "AODELd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODELd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test BoostAODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "BoostAODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "BoostAODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
// for (auto scores : scores) {
|
||||
// std::cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// }
|
||||
delete clf;
|
||||
}
|
||||
TEST_CASE("Models features", "[BayesNet]")
|
||||
{
|
||||
@@ -264,3 +205,20 @@ TEST_CASE("Model predict_proba", "[BayesNet]")
|
||||
delete clf;
|
||||
}
|
||||
}
|
||||
TEST_CASE("BoostAODE voting-proba", "[BayesNet]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
||||
REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_voting[83][2] == Catch::Approx(0.552091).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_proba[83][2] == Catch::Approx(0.546017).epsilon(raw.epsilon));
|
||||
}
|
||||
|
Reference in New Issue
Block a user