Files
ArffFiles/ArffFiles.hpp
Ricardo Montañana Gómez c408352daa Eliminate redundant memory and enhance memory usage
1. Eliminated Redundant Memory Usage

  - Before: Maintained both X (float) and Xs (string) vectors simultaneously → 2x memory usage
  - After: Use temporary categoricalData only during processing, deallocated automatically → ~50% memory reduction

  2. Implemented Memory Pre-allocation

  - Before: Vectors grew dynamically causing memory fragmentation
  - After: X.assign(numFeatures, std::vector<float>(numSamples)) pre-allocates all memory upfront
  - Benefit: Eliminates reallocation overhead and memory fragmentation

  3. Added Robust Exception Handling

  - Before: stof(token) could crash on malformed data
  - After: Wrapped in try-catch with descriptive error messages
  - Improvement: Prevents crashes and provides debugging information

  4. Optimized String Processing

  - Before: type += type_w + " " caused O(n²) string concatenation
  - After: Used std::ostringstream for efficient string building
  - Benefit: Better performance on files with complex attribute types
2025-06-27 18:20:06 +02:00

239 lines
8.9 KiB
C++

#ifndef ARFFFILES_HPP
#define ARFFFILES_HPP
#include <string>
#include <vector>
#include <map>
#include <sstream>
#include <fstream>
#include <cctype> // std::isdigit
#include <algorithm> // std::all_of std::transform
class ArffFiles {
const std::string VERSION = "1.1.0";
public:
ArffFiles() = default;
void load(const std::string& fileName, bool classLast = true)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
preprocessDataset(labelIndex);
generateDataset(labelIndex);
}
void load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw std::invalid_argument("Class name not found");
}
preprocessDataset(labelIndex);
generateDataset(labelIndex);
}
std::vector<std::string> getLines() const { return lines; }
unsigned long int getSize() const { return lines.size(); }
std::string getClassName() const { return className; }
std::string getClassType() const { return classType; }
std::map<std::string, std::vector<std::string>> getStates() const { return states; }
std::vector<std::string> getLabels() const { return states.at(className); }
static std::string trim(const std::string& source)
{
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
std::vector<std::vector<float>>& getX() { return X; }
const std::vector<std::vector<float>>& getX() const { return X; }
std::vector<int>& getY() { return y; }
const std::vector<int>& getY() const { return y; }
std::map<std::string, bool> getNumericAttributes() const { return numeric_features; }
std::vector<std::pair<std::string, std::string>> getAttributes() const { return attributes; };
std::vector<std::string> split(const std::string& text, char delimiter)
{
std::vector<std::string> result;
std::stringstream ss(text);
std::string token;
while (std::getline(ss, token, delimiter)) {
result.push_back(trim(token));
}
return result;
}
std::string version() const { return VERSION; }
protected:
std::vector<std::string> lines;
std::map<std::string, bool> numeric_features;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X; // X[feature][sample] - feature-major layout
std::vector<int> y;
std::map<std::string, std::vector<std::string>> states;
private:
void preprocessDataset(int labelIndex)
{
//
// Learn the numeric features
//
numeric_features.clear();
for (const auto& attribute : attributes) {
auto feature = attribute.first;
if (feature == className)
continue;
auto values = attribute.second;
std::transform(values.begin(), values.end(), values.begin(), ::toupper);
numeric_features[feature] = values == "REAL" || values == "INTEGER" || values == "NUMERIC";
}
}
std::vector<int> factorize(const std::string feature, const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
states.at(feature).clear();
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
if (allDigits)
states[feature].push_back("Class " + label);
else
states[feature].push_back(label);
}
yy.push_back(labelMap[label]);
}
return yy;
}
void generateDataset(int labelIndex)
{
const size_t numSamples = lines.size();
const size_t numFeatures = attributes.size();
// Pre-allocate with feature-major layout: X[feature][sample]
X.assign(numFeatures, std::vector<float>(numSamples));
// Temporary storage for categorical data per feature (only for non-numeric features)
std::vector<std::vector<std::string>> categoricalData(numFeatures);
for (size_t i = 0; i < numFeatures; ++i) {
if (!numeric_features[attributes[i].first]) {
categoricalData[i].reserve(numSamples);
}
}
std::vector<std::string> yy;
yy.reserve(numSamples);
// Parse each sample
for (size_t sampleIdx = 0; sampleIdx < numSamples; ++sampleIdx) {
const auto tokens = split(lines[sampleIdx], ',');
int pos = 0;
int featureIdx = 0;
for (const auto& token : tokens) {
if (pos++ == labelIndex) {
yy.push_back(token);
} else {
const auto& featureName = attributes[featureIdx].first;
if (numeric_features.at(featureName)) {
// Parse numeric value with exception handling
try {
X[featureIdx][sampleIdx] = std::stof(token);
} catch (const std::exception& e) {
throw std::invalid_argument("Invalid numeric value '" + token + "' at sample " + std::to_string(sampleIdx) + ", feature " + featureName);
}
} else {
// Store categorical value temporarily
categoricalData[featureIdx].push_back(token);
}
featureIdx++;
}
}
}
// Convert categorical features to numeric
for (size_t featureIdx = 0; featureIdx < numFeatures; ++featureIdx) {
if (!numeric_features[attributes[featureIdx].first]) {
const auto& featureName = attributes[featureIdx].first;
auto encodedValues = factorize(featureName, categoricalData[featureIdx]);
// Copy encoded values to X[feature][sample]
for (size_t sampleIdx = 0; sampleIdx < numSamples; ++sampleIdx) {
X[featureIdx][sampleIdx] = static_cast<float>(encodedValues[sampleIdx]);
}
}
}
y = factorize(className, yy);
}
void loadCommon(std::string fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::invalid_argument("Unable to open file");
}
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
// Efficiently build type string
std::ostringstream typeStream;
while (ss >> type_w) {
if (typeStream.tellp() > 0) typeStream << " ";
typeStream << type_w;
}
type = typeStream.str();
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
if (line.find("?", 0) != std::string::npos) {
// ignore lines with missing values
continue;
}
lines.push_back(line);
}
file.close();
for (const auto& attribute : attributes) {
states[attribute.first] = std::vector<std::string>();
}
if (attributes.empty())
throw std::invalid_argument("No attributes found");
}
};
#endif