1. Eliminated Redundant Memory Usage - Before: Maintained both X (float) and Xs (string) vectors simultaneously → 2x memory usage - After: Use temporary categoricalData only during processing, deallocated automatically → ~50% memory reduction 2. Implemented Memory Pre-allocation - Before: Vectors grew dynamically causing memory fragmentation - After: X.assign(numFeatures, std::vector<float>(numSamples)) pre-allocates all memory upfront - Benefit: Eliminates reallocation overhead and memory fragmentation 3. Added Robust Exception Handling - Before: stof(token) could crash on malformed data - After: Wrapped in try-catch with descriptive error messages - Improvement: Prevents crashes and provides debugging information 4. Optimized String Processing - Before: type += type_w + " " caused O(n²) string concatenation - After: Used std::ostringstream for efficient string building - Benefit: Better performance on files with complex attribute types
239 lines
8.9 KiB
C++
239 lines
8.9 KiB
C++
#ifndef ARFFFILES_HPP
|
|
#define ARFFFILES_HPP
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <sstream>
|
|
#include <fstream>
|
|
#include <cctype> // std::isdigit
|
|
#include <algorithm> // std::all_of std::transform
|
|
|
|
class ArffFiles {
|
|
const std::string VERSION = "1.1.0";
|
|
public:
|
|
ArffFiles() = default;
|
|
void load(const std::string& fileName, bool classLast = true)
|
|
{
|
|
int labelIndex;
|
|
loadCommon(fileName);
|
|
if (classLast) {
|
|
className = std::get<0>(attributes.back());
|
|
classType = std::get<1>(attributes.back());
|
|
attributes.pop_back();
|
|
labelIndex = static_cast<int>(attributes.size());
|
|
} else {
|
|
className = std::get<0>(attributes.front());
|
|
classType = std::get<1>(attributes.front());
|
|
attributes.erase(attributes.begin());
|
|
labelIndex = 0;
|
|
}
|
|
preprocessDataset(labelIndex);
|
|
generateDataset(labelIndex);
|
|
}
|
|
void load(const std::string& fileName, const std::string& name)
|
|
{
|
|
int labelIndex;
|
|
loadCommon(fileName);
|
|
bool found = false;
|
|
for (int i = 0; i < attributes.size(); ++i) {
|
|
if (attributes[i].first == name) {
|
|
className = std::get<0>(attributes[i]);
|
|
classType = std::get<1>(attributes[i]);
|
|
attributes.erase(attributes.begin() + i);
|
|
labelIndex = i;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
throw std::invalid_argument("Class name not found");
|
|
}
|
|
preprocessDataset(labelIndex);
|
|
generateDataset(labelIndex);
|
|
}
|
|
std::vector<std::string> getLines() const { return lines; }
|
|
unsigned long int getSize() const { return lines.size(); }
|
|
std::string getClassName() const { return className; }
|
|
std::string getClassType() const { return classType; }
|
|
std::map<std::string, std::vector<std::string>> getStates() const { return states; }
|
|
std::vector<std::string> getLabels() const { return states.at(className); }
|
|
static std::string trim(const std::string& source)
|
|
{
|
|
std::string s(source);
|
|
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
|
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
|
return s;
|
|
}
|
|
std::vector<std::vector<float>>& getX() { return X; }
|
|
const std::vector<std::vector<float>>& getX() const { return X; }
|
|
std::vector<int>& getY() { return y; }
|
|
const std::vector<int>& getY() const { return y; }
|
|
std::map<std::string, bool> getNumericAttributes() const { return numeric_features; }
|
|
std::vector<std::pair<std::string, std::string>> getAttributes() const { return attributes; };
|
|
std::vector<std::string> split(const std::string& text, char delimiter)
|
|
{
|
|
std::vector<std::string> result;
|
|
std::stringstream ss(text);
|
|
std::string token;
|
|
while (std::getline(ss, token, delimiter)) {
|
|
result.push_back(trim(token));
|
|
}
|
|
return result;
|
|
}
|
|
std::string version() const { return VERSION; }
|
|
protected:
|
|
std::vector<std::string> lines;
|
|
std::map<std::string, bool> numeric_features;
|
|
std::vector<std::pair<std::string, std::string>> attributes;
|
|
std::string className;
|
|
std::string classType;
|
|
std::vector<std::vector<float>> X; // X[feature][sample] - feature-major layout
|
|
std::vector<int> y;
|
|
std::map<std::string, std::vector<std::string>> states;
|
|
private:
|
|
void preprocessDataset(int labelIndex)
|
|
{
|
|
//
|
|
// Learn the numeric features
|
|
//
|
|
numeric_features.clear();
|
|
for (const auto& attribute : attributes) {
|
|
auto feature = attribute.first;
|
|
if (feature == className)
|
|
continue;
|
|
auto values = attribute.second;
|
|
std::transform(values.begin(), values.end(), values.begin(), ::toupper);
|
|
numeric_features[feature] = values == "REAL" || values == "INTEGER" || values == "NUMERIC";
|
|
}
|
|
}
|
|
std::vector<int> factorize(const std::string feature, const std::vector<std::string>& labels_t)
|
|
{
|
|
std::vector<int> yy;
|
|
states.at(feature).clear();
|
|
yy.reserve(labels_t.size());
|
|
std::map<std::string, int> labelMap;
|
|
int i = 0;
|
|
for (const std::string& label : labels_t) {
|
|
if (labelMap.find(label) == labelMap.end()) {
|
|
labelMap[label] = i++;
|
|
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
|
|
if (allDigits)
|
|
states[feature].push_back("Class " + label);
|
|
else
|
|
states[feature].push_back(label);
|
|
}
|
|
yy.push_back(labelMap[label]);
|
|
}
|
|
return yy;
|
|
}
|
|
void generateDataset(int labelIndex)
|
|
{
|
|
const size_t numSamples = lines.size();
|
|
const size_t numFeatures = attributes.size();
|
|
|
|
// Pre-allocate with feature-major layout: X[feature][sample]
|
|
X.assign(numFeatures, std::vector<float>(numSamples));
|
|
|
|
// Temporary storage for categorical data per feature (only for non-numeric features)
|
|
std::vector<std::vector<std::string>> categoricalData(numFeatures);
|
|
for (size_t i = 0; i < numFeatures; ++i) {
|
|
if (!numeric_features[attributes[i].first]) {
|
|
categoricalData[i].reserve(numSamples);
|
|
}
|
|
}
|
|
|
|
std::vector<std::string> yy;
|
|
yy.reserve(numSamples);
|
|
|
|
// Parse each sample
|
|
for (size_t sampleIdx = 0; sampleIdx < numSamples; ++sampleIdx) {
|
|
const auto tokens = split(lines[sampleIdx], ',');
|
|
|
|
int pos = 0;
|
|
int featureIdx = 0;
|
|
|
|
for (const auto& token : tokens) {
|
|
if (pos++ == labelIndex) {
|
|
yy.push_back(token);
|
|
} else {
|
|
const auto& featureName = attributes[featureIdx].first;
|
|
if (numeric_features.at(featureName)) {
|
|
// Parse numeric value with exception handling
|
|
try {
|
|
X[featureIdx][sampleIdx] = std::stof(token);
|
|
} catch (const std::exception& e) {
|
|
throw std::invalid_argument("Invalid numeric value '" + token + "' at sample " + std::to_string(sampleIdx) + ", feature " + featureName);
|
|
}
|
|
} else {
|
|
// Store categorical value temporarily
|
|
categoricalData[featureIdx].push_back(token);
|
|
}
|
|
featureIdx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert categorical features to numeric
|
|
for (size_t featureIdx = 0; featureIdx < numFeatures; ++featureIdx) {
|
|
if (!numeric_features[attributes[featureIdx].first]) {
|
|
const auto& featureName = attributes[featureIdx].first;
|
|
auto encodedValues = factorize(featureName, categoricalData[featureIdx]);
|
|
|
|
// Copy encoded values to X[feature][sample]
|
|
for (size_t sampleIdx = 0; sampleIdx < numSamples; ++sampleIdx) {
|
|
X[featureIdx][sampleIdx] = static_cast<float>(encodedValues[sampleIdx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
y = factorize(className, yy);
|
|
}
|
|
void loadCommon(std::string fileName)
|
|
{
|
|
std::ifstream file(fileName);
|
|
if (!file.is_open()) {
|
|
throw std::invalid_argument("Unable to open file");
|
|
}
|
|
std::string line;
|
|
std::string keyword;
|
|
std::string attribute;
|
|
std::string type;
|
|
std::string type_w;
|
|
while (getline(file, line)) {
|
|
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
|
continue;
|
|
}
|
|
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
|
std::stringstream ss(line);
|
|
ss >> keyword >> attribute;
|
|
// Efficiently build type string
|
|
std::ostringstream typeStream;
|
|
while (ss >> type_w) {
|
|
if (typeStream.tellp() > 0) typeStream << " ";
|
|
typeStream << type_w;
|
|
}
|
|
type = typeStream.str();
|
|
attributes.emplace_back(trim(attribute), trim(type));
|
|
continue;
|
|
}
|
|
if (line[0] == '@') {
|
|
continue;
|
|
}
|
|
if (line.find("?", 0) != std::string::npos) {
|
|
// ignore lines with missing values
|
|
continue;
|
|
}
|
|
lines.push_back(line);
|
|
}
|
|
file.close();
|
|
for (const auto& attribute : attributes) {
|
|
states[attribute.first] = std::vector<std::string>();
|
|
}
|
|
if (attributes.empty())
|
|
throw std::invalid_argument("No attributes found");
|
|
}
|
|
};
|
|
|
|
#endif
|