Files
stree_datasets/experimentation/Experiments.py

170 lines
5.9 KiB
Python

import json
import os
import time
import warnings
from sklearn.model_selection import GridSearchCV, cross_validate
from . import Models
from .Database import Hyperparameters, Outcomes, MySQL
from .Sets import Datasets
class Experiment:
def __init__(
self,
random_state: int,
model: str,
host: str,
set_of_files: str,
kernel: str,
threads: int = -1,
) -> None:
self._random_state = random_state
self._set_model(model)
self._set_of_files = set_of_files
self._clf = self._type(random_state=self._random_state)
self._host = host
# used in gridsearch with ensembles to take best hyperparams of
# base class or gridsearch these hyperparams as well
self._base_params = "any"
self._kernel = kernel
self._threads = threads
def set_base_params(self, base_params: str) -> None:
self._base_params = base_params
def _set_model(self, model_name: str) -> None:
self._model_name = model_name
self._type = getattr(
Models,
f"Model{model_name[0].upper() + model_name[1:]}",
)
def cross_validation(self, dataset: str) -> None:
self._clf = self._type(random_state=self._random_state)
model = self._clf.get_model()
hyperparams = MySQL()
hyperparams.get_connection()
record = hyperparams.find_best(dataset, self._model_name)
hyperparams.close()
if record is None:
try:
hyperparams = Hyperparameters(
host=self._host, model=self._model_name
)
parameters, normalize, standardize = hyperparams.get_params(
dataset
)
except ValueError:
print(f"*** {dataset} not trained")
return
else:
normalize = record[6]
standardize = record[7]
parameters = record[8]
datasets = Datasets(
normalize=normalize,
standardize=standardize,
set_of_files=self._set_of_files,
)
parameters = json.loads(parameters)
X, y = datasets.load(dataset)
# init cross validation object just in case consecutive experiments
self._clf = self._type(random_state=self._random_state)
model.set_params(**parameters)
self._num_warnings = 0
warnings.warn = self._warn
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
# Also affect subprocesses
os.environ["PYTHONWARNINGS"] = "ignore"
results = cross_validate(
model, X, y, return_train_score=True, n_jobs=self._threads
)
outcomes = Outcomes(host=self._host, model=self._model_name)
parameters = json.dumps(parameters, sort_keys=True)
outcomes.store(dataset, normalize, standardize, parameters, results)
if self._num_warnings > 0:
print(f"{self._num_warnings} warnings have happend")
def grid_search(
self, dataset: str, normalize: bool, standardize: bool
) -> None:
"""First of all if the modle is an ensemble search for the best
hyperparams found in gridsearch for base model and overrides
normalize and standardize
"""
hyperparams = Hyperparameters(host=self._host, model=self._model_name)
model = self._clf.get_model()
if self._kernel != "any":
# set parameters grid to only one kernel
if isinstance(self._clf, Models.Ensemble):
self._clf._base_model.select_params(self._kernel)
else:
self._clf.select_params(self._kernel)
hyperparameters = self._clf.get_parameters()
grid_type = "gridsearch"
if (
isinstance(self._clf, Models.Ensemble)
and self._base_params == "best"
):
hyperparams_base = Hyperparameters(
host=self._host, model=self._clf._base_model.get_model_name()
)
try:
# Get best hyperparameters obtained in gridsearch for base clf
(
base_hyperparams,
normalize,
standardize,
) = hyperparams_base.get_params(dataset)
# Merge hyperparameters with the ensemble ones
base_hyperparams = json.loads(base_hyperparams)
hyperparameters = self._clf.merge_parameters(base_hyperparams)
grid_type = "gridbest"
except ValueError:
pass
dt = Datasets(
normalize=normalize,
standardize=standardize,
set_of_files=self._set_of_files,
)
X, y = dt.load(dataset)
self._num_warnings = 0
warnings.warn = self._warn
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
# Also affect subprocesses
os.environ["PYTHONWARNINGS"] = "ignore"
grid_search = GridSearchCV(
model,
return_train_score=True,
param_grid=hyperparameters,
n_jobs=self._threads,
verbose=1,
)
start_time = time.time()
grid_search.fit(X, y)
time_spent = time.time() - start_time
parameters = json.dumps(
self._clf.modified_parameters(
grid_search.best_estimator_.get_params()
),
sort_keys=True,
)
hyperparams.store(
dataset,
time_spent,
grid_search,
parameters,
normalize,
standardize,
grid_type,
)
if self._num_warnings > 0:
print(f"{self._num_warnings} warnings have happend")
def _warn(self, *args, **kwargs) -> None:
self._num_warnings += 1