Files
stree_datasets/data/tanveer/conn-bench-vowel-deterding/vowel-context.names
2020-11-20 11:23:40 +01:00

137 lines
2.1 KiB
Plaintext
Executable File

Introduction
============
In my work on context-sensitive learning, I used the "Deterding Vowel
Recognition Data", but I found it necessary to reformulate the data.
Implicit in the original data is contextual information on the
speaker's gender and identity. For my work, it was necessary to make
this information explicit. The file "vowel-context.data" adds the
speaker's sex and identity as new features. The format of the data file
is described below.
Peter Turney
peter@ai.iit.nrc.ca
References
==========
P. Turney. "Robust Classification With Context-Sensitive Features."
Proceedings of the Sixth International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert
Systems (IEA/AIE-93): 268-276. 1993.
URL: ftp://ai.iit.nrc.ca/pub/ksl-papers/NRC-35074.ps.Z
P. Turney. "Exploiting Context When Learning to Classify."
Proceedings of the European Conference on Machine Learning
(ECML-93): 402-407. 1993.
URL: ftp://ai.iit.nrc.ca/pub/ksl-papers/NRC-35058.ps.Z
File Structure
==============
Column Description
-------------------------------
0 Train or Test
1 Speaker Number
2 Sex
3 Feature 0
4 Feature 1
5 Feature 2
6 Feature 3
7 Feature 4
8 Feature 5
9 Feature 6
10 Feature 7
11 Feature 8
12 Feature 9
13 Class
Numerical Codes
===============
Speaker Code Number
---------------------------
Andrew 0
Bill 1
David 2
Mark 3
Jo 4
Kate 5
Penny 6
Rose 7
Mike 8
Nick 9
Rich 10
Tim 11
Sarah 12
Sue 13
Wendy 14
Set Number
---------------------------
Train 0
Test 1
Sex Number
---------------------------
Male 0
Female 1
Class Number
---------------------------
hid 0
hId 1
hEd 2
hAd 3
hYd 4
had 5
hOd 6
hod 7
hUd 8
hud 9
hed 10
Speaker Code Number Sex Train/Test
---------------------------------------------------------------
Andrew 0 0 0
Bill 1 0 0
David 2 0 0
Mark 3 0 0
Jo 4 1 0
Kate 5 1 0
Penny 6 1 0
Rose 7 1 0
Mike 8 0 1
Nick 9 0 1
Rich 10 0 1
Tim 11 0 1
Sarah 12 1 1
Sue 13 1 1
Wendy 14 1 1