Files
stree_datasets/grid_all.py
2020-11-20 11:23:40 +01:00

87 lines
1.9 KiB
Python
Executable File

import argparse
from typing import Tuple
from experimentation.Sets import Datasets
from experimentation import Experiment
def parse_arguments() -> Tuple[str, str, str, bool, bool]:
ap = argparse.ArgumentParser()
ap.add_argument(
"-H",
"--host",
type=str,
choices=["develop", "galgo"],
required=False,
default="develop",
)
ap.add_argument(
"-m",
"--model",
type=str,
choices=["stree", "adaBoost", "bagging", "odte"],
required=False,
default="stree",
)
ap.add_argument(
"-S",
"--set-of-files",
type=str,
choices=["aaai", "tanveer"],
required=False,
default="aaai",
)
ap.add_argument(
"-n",
"--normalize",
default=False,
type=bool,
required=False,
help="Normalize dataset (True/False)",
)
ap.add_argument(
"-s",
"--standardize",
default=False,
type=bool,
required=False,
help="Standardize dataset (True/False)",
)
ap.add_argument(
"-b",
"--best-base",
type=str,
choices=["best", "any"],
default="any",
required=False,
help="Best base classifier parameters {best, any}",
)
args = ap.parse_args()
return (
args.host,
args.model,
args.set_of_files,
args.normalize,
args.standardize,
args.best_base,
)
(
host,
model,
set_of_files,
normalize,
standardize,
best_base,
) = parse_arguments()
datasets = Datasets(False, False, set_of_files)
clf = None
experiment = Experiment(
random_state=1, model=model, host=host, set_of_files=set_of_files
)
experiment.set_base_params(best_base)
for dataset in datasets:
print(f"-Grid search on {dataset[0]}")
experiment.grid_search(dataset[0], normalize, standardize)