Files
stree_datasets/checknormalize.py

98 lines
3.2 KiB
Python
Executable File

import random
import time
import numpy as np
from sklearn.model_selection import KFold, cross_validate
from experimentation.Sets import Datasets
from stree import Stree
from experimentation.Utils import TextColor
from experimentation.Database import MySQL
def normalize(data: np.array) -> np.array:
min_data = data.min()
return (data - min_data) / (data.max() - min_data)
def normalize_rows(data: np.array) -> np.array:
res = data.copy()
for col in range(res.shape[1]):
res[:, col] = normalize(res[:, col])
return res
def header():
print("Processing Datasets with stree default.\n")
print(
f"{'Dataset':30s} {'No Norm.':9s} {'Normaliz.':9s} "
f"{'Col.Norm.':9s} {'Context B':9s} {'Best score in crossval':25s}"
)
print("=" * 30 + " " + ("=" * 9 + " ") * 4 + "=" * 25)
def process_dataset(X, y, normalize):
scores = []
# return random.uniform(0, 1)
for random_state in random_seeds:
random.seed(random_state)
clf_test = Stree(random_state=random_state, normalize=normalize)
np.random.seed(random_state)
kfold = KFold(shuffle=True, random_state=random_state, n_splits=5)
res = cross_validate(clf_test, X, y, cv=kfold, return_estimator=True)
scores.append(res["test_score"])
return np.mean(scores)
start = time.time()
models_tree = [
"stree",
"stree_default",
"wodt",
"j48svm",
"oc1",
"cart",
"baseRaF",
]
dbh = MySQL()
database = dbh.get_connection()
random_seeds = [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
dt = Datasets(normalize=False, standardize=False, set_of_files="tanveer")
header()
total = [0, 0, 0, 0]
line = TextColor.LINE1
for data in dt:
name = data[0]
X, y = dt.load(name)
record = dbh.find_best(name, models_tree, "crossval")
X2 = normalize(X)
X3 = normalize_rows(X)
ac1 = process_dataset(X, y, False)
ac2 = process_dataset(X2, y, False)
ac3 = process_dataset(X3, y, False)
ac4 = process_dataset(X, y, True)
max_value = round(max(ac1, ac2, ac3, ac4), 6)
line = TextColor.LINE2 if line == TextColor.LINE1 else TextColor.LINE1
print(line + f"{name:30s} ", end="", flush=True)
total[np.argmax([ac1, ac2, ac3, ac4])] += 1
color1 = TextColor.SUCCESS if ac1 == max_value else line
color2 = TextColor.SUCCESS if ac2 == max_value else line
color3 = TextColor.SUCCESS if ac3 == max_value else line
color4 = TextColor.SUCCESS if ac4 == max_value else line
print(color1 + f"{ac1:9.6f} " + TextColor.ENDC, end="", flush=True)
print(color2 + f"{ac2:9.6f} " + TextColor.ENDC, end="", flush=True)
print(color3 + f"{ac3:9.6f} " + TextColor.ENDC, end="", flush=True)
print(color4 + f"{ac4:9.6f}" + TextColor.ENDC, end="", flush=True)
best_accuracy = round(record[5], 6)
best_color = TextColor.UNDERLINE if best_accuracy >= max_value else ""
print(
line
+ best_color
+ f"{best_accuracy:9.6f} {record[3]}"
+ TextColor.ENDC
)
print(f"{'Total':30s} {total[0]:9d} {total[1]:9d} {total[2]:9d} {total[3]:9d}")
stop = time.time()
hours, rem = divmod(stop - start, 3600)
minutes, seconds = divmod(rem, 60)
print(f"Time: {int(hours):2d}h {int(minutes):2d}m {int(seconds):2d}s")
dbh.close()