import argparse from typing import Tuple from experimentation.Sets import Datasets from experimentation import Experiment def parse_arguments() -> Tuple[str, str, str, bool, bool]: ap = argparse.ArgumentParser() ap.add_argument( "-H", "--host", type=str, choices=["develop", "galgo"], required=False, default="develop", ) ap.add_argument( "-m", "--model", type=str, choices=["stree", "adaBoost", "bagging", "odte"], required=False, default="stree", ) ap.add_argument( "-S", "--set-of-files", type=str, choices=["aaai", "tanveer"], required=False, default="aaai", ) ap.add_argument( "-n", "--normalize", default=False, type=bool, required=False, help="Normalize dataset (True/False)", ) ap.add_argument( "-s", "--standardize", default=False, type=bool, required=False, help="Standardize dataset (True/False)", ) ap.add_argument( "-b", "--best-base", type=str, choices=["best", "any"], default="any", required=False, help="Best base classifier parameters {best, any}", ) args = ap.parse_args() return ( args.host, args.model, args.set_of_files, args.normalize, args.standardize, args.best_base, ) ( host, model, set_of_files, normalize, standardize, best_base, ) = parse_arguments() datasets = Datasets(False, False, set_of_files) clf = None experiment = Experiment( random_state=1, model=model, host=host, set_of_files=set_of_files ) experiment.set_base_params(best_base) for dataset in datasets: print(f"-Grid search on {dataset[0]}") experiment.grid_search(dataset[0], normalize, standardize)