import argparse import random import time from datetime import datetime import json import numpy as np import xlsxwriter from sklearn.tree import DecisionTreeClassifier from stree import Stree from sklearn.model_selection import KFold, cross_validate from experimentation.Sets import Datasets from experimentation.Database import MySQL from wodt import TreeClassifier from experimentation.Utils import TextColor from mdlp import MDLP CHECK_MARK = "\N{heavy check mark}" EXCLAMATION_MARK = "\N{heavy exclamation mark symbol}" BLACK_STAR = "\N{black star}" def parse_arguments(): ap = argparse.ArgumentParser() ap.add_argument( "-S", "--set-of-files", type=str, choices=["aaai", "tanveer"], required=False, default="tanveer", ) ap.add_argument( "-m", "--model", type=str, required=False, default="stree_default", help="model name, default stree_default", ) ap.add_argument( "-d", "--dataset", type=str, required=True, help="dataset to process, all for everyone", ) ap.add_argument( "-s", "--sql", default=False, type=bool, required=False, help="generate report_score.sql", ) ap.add_argument( "-n", "--normalize", type=int, required=True, ) ap.add_argument( "-x", "--excel", type=str, default="", required=False, help="generate excel file", ) ap.add_argument( "-di", "--discretize", type=bool, default=False, required=False, help="Discretize datasets", ) ap.add_argument( "-p", "--parameters", type=str, required=False, default="{}" ) args = ap.parse_args() return ( args.set_of_files, args.model, args.dataset, args.sql, bool(args.normalize), args.parameters, args.excel, args.discretize, ) def get_classifier(model, random_state, hyperparameters): if model == "stree" or model == "stree_default": clf = Stree(random_state=random_state) clf.set_params(**hyperparameters) if model == "wodt": clf = TreeClassifier(random_state=random_state) if model == "cart": clf = DecisionTreeClassifier(random_state=random_state) return clf def process_dataset(dataset, verbose, model, params): X, y = dt.load(dataset) if discretize: mdlp = MDLP(random_state=1) X = mdlp.fit_transform(X, y) scores = [] times = [] nodes = [] leaves = [] depths = [] if verbose: print( f"* Processing dataset [{dataset}] from Set: {set_of_files} with " f"{model}" ) print(f"X.shape: {X.shape}") print(f"{X[:4]}") print(f"Random seeds: {random_seeds}") hyperparameters = json.loads(params) if model == "stree": # Get the optimized parameters record = dbh.find_best(dataset, model, "gridsearch") hyperparameters = json.loads(record[8] if record[8] != "" else "{}") hyperparameters.pop("random_state", None) for random_state in random_seeds: random.seed(random_state) np.random.seed(random_state) kfold = KFold(shuffle=True, random_state=random_state, n_splits=5) clf = get_classifier(model, random_state, hyperparameters) res = cross_validate(clf, X, y, cv=kfold, return_estimator=True) scores.append(res["test_score"]) times.append(res["fit_time"]) for result_item in res["estimator"]: if model == "cart": nodes_item = result_item.tree_.node_count depth_item = result_item.tree_.max_depth leaves_item = result_item.get_n_leaves() else: nodes_item, leaves_item = result_item.nodes_leaves() depth_item = result_item.depth_ nodes.append(nodes_item) leaves.append(leaves_item) depths.append(depth_item) if verbose: print( f"Random seed: {random_state:5d} Accuracy: " f"{res['test_score'].mean():6.4f}±" f"{res['test_score'].std():6.4f} " f"{res['fit_time'].mean():5.3f}s" ) return scores, times, json.dumps(hyperparameters), nodes, leaves, depths def store_string( dataset, model, accuracy, time_spent, hyperparameters, complexity ): attributes = [ "date", "time", "type", "accuracy", "accuracy_std", "dataset", "classifier", "norm", "stand", "time_spent", "time_spent_std", "parameters", "nodes", "leaves", "depth", ] command_insert = ( "replace into results (" + ",".join(attributes) + ") values(" + ("'%s'," * len(attributes))[:-1] + ");" ) now = datetime.now() date = now.strftime("%Y-%m-%d") time = now.strftime("%H:%M:%S") nodes, leaves, depth = complexity.values() values = ( date, time, "crossval", np.mean(accuracy), np.std(accuracy), dataset, model, 1, 0, np.mean(time_spent), np.std(time_spent), hyperparameters, nodes, leaves, depth, ) result = command_insert % values return result def excel_write_line( book, sheet, name, samples, features, classes, accuracy, times, hyperparameters, complexity, status, ): try: excel_write_line.row += 1 except AttributeError: excel_write_line.row = 4 size_n = 14 decimal = book.add_format({"num_format": "0.000000", "font_size": size_n}) integer = book.add_format({"num_format": "#,###", "font_size": size_n}) normal = book.add_format({"font_size": size_n}) col = 0 status, _ = excel_status(status) sheet.write(excel_write_line.row, col, name, normal) sheet.write(excel_write_line.row, col + 1, samples, integer) sheet.write(excel_write_line.row, col + 2, features, normal) sheet.write(excel_write_line.row, col + 3, classes, normal) sheet.write(excel_write_line.row, col + 4, complexity["nodes"], normal) sheet.write(excel_write_line.row, col + 5, complexity["leaves"], normal) sheet.write(excel_write_line.row, col + 6, complexity["depth"], normal) sheet.write(excel_write_line.row, col + 7, accuracy, decimal) sheet.write(excel_write_line.row, col + 8, status, normal) sheet.write(excel_write_line.row, col + 9, np.mean(times), decimal) sheet.write(excel_write_line.row, col + 10, hyperparameters, normal) def excel_write_header(book, sheet): header = book.add_format() header.set_font_size(18) subheader = book.add_format() subheader.set_font_size(16) sheet.write( 0, 0, f"Process all datasets set with {model}: {set_of_files} " f"norm: {normalize} std: {standardize} discretize: {discretize} " f"store in: {model}", header, ) sheet.write( 1, 0, "5 Fold Cross Validation with 10 random seeds", subheader, ) sheet.write(1, 5, f"{random_seeds}", subheader) header_cols = [ ("Dataset", 30), ("Samples", 10), ("Variables", 7), ("Classes", 7), ("Nodes", 7), ("Leaves", 7), ("Depth", 7), ("Accuracy", 10), ("Stat", 3), ("Time", 10), ("Parameters", 50), ] bold = book.add_format({"bold": True, "font_size": 14}) i = 0 for item, length in header_cols: sheet.write(3, i, item, bold) sheet.set_column(i, i, length) i += 1 def excel_status(status): if status == TextColor.GREEN + CHECK_MARK + TextColor.ENDC: return EXCLAMATION_MARK, "Accuracy better than stree optimized" elif status == TextColor.RED + BLACK_STAR + TextColor.ENDC: return BLACK_STAR, "Best accuracy of al models" elif status != " ": return CHECK_MARK, "Accuracy better than original stree_default" return " ", "" def excel_write_totals(book, sheet, totals, start): i = 2 bold = book.add_format({"bold": True, "font_size": 16}) for key, total in totals.items(): status, text = excel_status(key) sheet.write(excel_write_line.row + i, 1, status, bold) sheet.write(excel_write_line.row + i, 2, total, bold) sheet.write(excel_write_line.row + i, 3, text, bold) i += 1 time_spent = get_time(start, time.time()) sheet.write(excel_write_line.row + i + 1, 0, time_spent, bold) def compute_status(dbh, name, model, accuracy): n_dig = 6 ac_round = round(accuracy, n_dig) better_default = CHECK_MARK better_stree = TextColor.GREEN + CHECK_MARK + TextColor.ENDC best = TextColor.RED + BLACK_STAR + TextColor.ENDC best_default, _ = get_best_score(dbh, name, model) best_stree, _ = get_best_score(dbh, name, "stree") best_all, _ = get_best_score(dbh, name, models_tree) status = better_default if ac_round > round(best_default, n_dig) else " " status = better_stree if ac_round > round(best_stree, n_dig) else status status = best if ac_round > round(best_all, n_dig) else status return status def get_best_score(dbh, name, model): record = dbh.find_best(name, model, "crossval") accuracy = record[5] if record is not None else 0.0 acc_std = record[11] if record is not None else 0.0 return accuracy, acc_std def get_time(start, stop): hours, rem = divmod(stop - start, 3600) minutes, seconds = divmod(rem, 60) return f"Time: {int(hours):2d}h {int(minutes):2d}m {int(seconds):2d}s" random_seeds = [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] models_tree = [ "stree", "stree_default", "wodt", "j48svm", "oc1", "cart", "baseRaF", ] standardize = False ( set_of_files, model, dataset, sql, normalize, parameters, excel, discretize, ) = parse_arguments() # parameters = '{"splitter":"cfs","max_features":"auto"}' dbh = MySQL() if sql: sql_output = open(f"{model}.sql", "w") if excel != "": file_name = f"{excel}.xlsx" excel_wb = xlsxwriter.Workbook(file_name) excel_ws = excel_wb.add_worksheet(model) excel_write_header(excel_wb, excel_ws) database = dbh.get_connection() dt = Datasets(normalize, standardize, set_of_files) start = time.time() if dataset == "all": print( f"* Process all datasets set with {model}: {set_of_files} " f"norm: {normalize} std: {standardize} discretize: {discretize}" f" store in: {model}" ) print(f"5 Fold Cross Validation with 10 random seeds {random_seeds}\n") header_cols = [ "Dataset", "Samp", "Var", "Cls", "Nodes", "Leaves", "Depth", "Accuracy", "Time", "Parameters", ] header_lengths = [30, 5, 3, 3, 7, 7, 7, 15, 15, 10] parameters = json.dumps(json.loads(parameters)) if parameters != "{}" and len(parameters) > 10: header_lengths.pop() header_lengths.append(len(parameters)) line_col = "" for field, underscore in zip(header_cols, header_lengths): print(f"{field:{underscore}s} ", end="") line_col += "=" * underscore + " " print(f"\n{line_col}") totals = {} accuracy_total = 0.0 for dataset in dt: name = dataset[0] X, y = dt.load(name) # type: ignore samples, features = X.shape classes = len(np.unique(y)) print( f"{name:30s} {samples:5d} {features:3d} {classes:3d} ", end="", ) scores, times, hyperparameters, nodes, leaves, depth = process_dataset( dataset[0], verbose=False, model=model, params=parameters ) complexity = dict( nodes=float(np.mean(nodes)), leaves=float(np.mean(leaves)), depth=float(np.mean(depth)), ) nodes_item, leaves_item, depth_item = complexity.values() print( f"{nodes_item:7.2f} {leaves_item:7.2f} {depth_item:7.2f} ", end="", ) accuracy = np.mean(scores) accuracy_total += accuracy status = ( compute_status(dbh, name, model, accuracy) if model == "stree_default" else " " ) if status != " ": if status not in totals: totals[status] = 1 else: totals[status] += 1 print(f"{accuracy:8.6f}±{np.std(scores):6.4f}{status}", end="") print(f"{np.mean(times):8.6f}±{np.std(times):6.4f} {hyperparameters}") if sql: command = store_string( name, model, scores, times, hyperparameters, complexity ) print(command, file=sql_output) if excel != "": excel_write_line( excel_wb, excel_ws, name, samples, features, classes, accuracy, times, hyperparameters, complexity, status, ) for key, value in totals.items(): print(f"{key} .....: {value:2d}") print( f"** Accuracy compared to stree_default (liblinear-ovr) .: " f"{accuracy_total/40.282203:7.4f}" ) if excel != "": excel_write_totals(excel_wb, excel_ws, totals, start) excel_wb.close() else: scores, times, hyperparameters, nodes, leaves, depth = process_dataset( dataset, verbose=True, model=model, params=parameters ) best_accuracy, acc_best_std = get_best_score(dbh, dataset, model) accuracy = np.mean(scores) print(f"* Normalize/Standard.: {normalize} / {standardize}") print( f"* Accuracy Computed .: {accuracy:6.4f}±{np.std(scores):6.4f} " f"{np.mean(times):5.3f}s" ) print(f"* Best Accuracy model: {best_accuracy:6.4f}±{acc_best_std:6.4f}") print(f"* Difference ........: {best_accuracy - accuracy:6.4f}") best_accuracy, acc_best_std = get_best_score(dbh, dataset, models_tree) print(f"* Best Accuracy .....: {best_accuracy:6.4f}±{acc_best_std:6.4f}") print(f"* Difference ........: {best_accuracy - accuracy:6.4f}") print( f"* Nodes/Leaves/Depth : {np.mean(nodes):.2f} {np.mean(leaves):.2f} " f"{np.mean(depth):.2f} " ) print(f"- Hyperparameters ...: {hyperparameters}") stop = time.time() time_spent = get_time(start, time.time()) print(f"{time_spent}") if sql: sql_output.close() dbh.close()