iris.csv vehicle.csv wine.csv glass.csv heart.csv # spaces breast # 683 vs 690 samples in dataset diabetes # from Kaggle fourclass # taken from libsvm samples TKH96a Tin Kam Ho and Eugene M. Kleinberg. #Building projectable classifiers of arbitrary complexity. #In Proceedings of the 13th International Conference on Pattern Recognition, pages 880-885, Vienna, Austria, August 1996. segment # sparse libsvm para cargar X, y = np.load("data/segment.npy", allow_pickle=True) para leer .scale sklearn.datasets.load_svmlight_file letter sat (has to be satimage) usps # kaggle import h5py with h5py.File(path, 'r') as hf: train = hf.get('train') X_tr = train.get('data')[:] y_tr = train.get('target')[:] test = hf.get('test') X_te = test.get('data')[:] y_te = test.get('target')[:] pendigits protein # https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#connect-4 dna # openml connect 4 # https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#connect-4 ijcnn1 # libsvm https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html Datasets que hay que cargar X e y y son sparse matrices ======================================================= (X, y= np.load("data/connect4.npy", allow_pickle=True)) connect4 fourclass ijcnn1 protein segment vehicle from svmlight_loader import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) para enlazar matrices sparse: from scipy.sparse import vstack X = vstack((Xs, Xt))